Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download
Views: 42
Image: ubuntu2204
Kernel: SageMath 10.1

Curves in the three-dimensional space, derivative and integral of vector functions

Curves in the space

Consider the following parametralized curve x=f(t),y=g(t),z=h(t),tI.x=f(t),\quad y=g(t),\quad z=h(t),\quad t\in I. The points (x,y,z)=(f(t),g(t),z(t)), tI(x,y,z)=(f(t),g(t),z(t)),~t\in I make up the curve in the space that is also called the particle's path. It has an equivalent form r(t)=OP=f(t)i+g(t)j+h(t)k.\vec{r}(t)=\overrightarrow{OP}=f(t)\vec{i}+g(t)\vec{j}+h(t)\vec{k}. The position vector r\vec{r} = OP\overrightarrow{OP} of a particle moving in the space is a function of time.

Example: Graph the vector function r(t)=(cost)i+(sint)j+tk\vec{r}(t) = (\cos t)\vec{i} + (\sin t)\vec{j} + t\vec{k}

reset() var('x y z t') p = implicit_plot3d(x^2+y^2==1, (x, -1, 1), (y, -1, 1), (z, 0, 2*pi), opacity = 0.5) p += parametric_plot3d([cos(t), sin(t), t], (t, 0, 2*pi), color = 'red', thickness = 3) p.show()
Graphics3d Object

Limits and continuity

Definition Let r(t)=OP=f(t)i+g(t)j+h(t)k\vec{r}(t) = \overrightarrow{OP}=f(t)\vec{i}+g(t)\vec{j}+h(t)\vec{k} be a vector function with domain DD and L\vec{L} a vector. We say that r\vec{r} has limit L\vec{L} as tt approaches t0t_0 and write limtt0r(t)=L\lim_{t\rightarrow t_0}\vec{r}(t)=\vec{L} if, for every number ϵ>0\epsilon>0, there exists a corresponding number δ>0\delta>0 such that for all tDt\in D, r(t)L<ϵ, whenever 0<tt0<δ.|\vec{r}(t)-\vec{L}|<\epsilon,\mbox{ whenever } 0<|t-t_0|<\delta.

Definition A vector function r(t)\vec{r}(t) is continuous at a point t=t0t=t_0 in its domain if limtt0r(t)=r(t0)\lim_{t\rightarrow t_0}\vec{r}(t)=\vec{r}(t_0). The function is continuous if it is continuous over its domain.

Note When we consider the limit and continuity of a vector function, we consider each component function independently.

A vector function is continuous if and only if its component functions are continuous. Each component of the limit of a vector function comes from the limit of each component function.

Derivatives of vector functions

Definition The vector function r(t)=f(t)i+g(t)j+h(t)k\vec{r}(t)=f(t)\vec{i}+g(t)\vec{j}+h(t)\vec{k} has a derivative (is differentiable) at tt if ff, gg, and hh have derivatives at tt. The derivative is the vector function r(t)=drdt=limΔt0r(t+Δt)r(t)Δt=dfdti+dgdtj+dhdtk.\vec{r}'(t)={d\vec{r}\over dt}=\lim_{\Delta t\rightarrow 0}{\vec{r}(t+\Delta t)-\vec{r}(t)\over \Delta t}={df\over dt}\vec{i}+{dg\over dt}\vec{j}+{dh\over dt}\vec{k}.

Motion

Definition If r\vec{r} is the position vector of a particle moving along a smooth curve in space, then v(t)=drdt\vec{v}(t) = {d\vec{r}\over dt} is the particle's velocity vector, which is tangent to the curve. At any time tt, the direction of v\vec{v} is the direction of motion, the magnitude of v\vec{v} is the particle's speed, and the derivative a=dvdt\vec{a}={d\vec{v}\over dt} when it exists, is the particle's acceleration vector. In summary,

  • Velocity is the derivative of position v(t)=drdt\vec{v}(t) = {d\vec{r}\over dt}

  • Speed is the magnitude of velocity v|\vec{v}|

  • The unit vector vv{\vec{v}\over |\vec{v}|} is the direction of motion at time tt

  • Acceleration is the derivative of velocity: a(t)=dvdt\vec{a}(t) = {d\vec{v}\over dt}

Example: Find the velocity, speed, and acceleration of r(t)=2costi+2sintj+5cos2tk\vec{r}(t)=2\cos t\vec{i}+2\sin t\vec{j}+5\cos^2t\vec{k}

velocity:v(t)=drdt=2sinti+2costj10costsintk\text{velocity:}\quad \vec{v}(t) = {d\vec{r}\over dt} = -2\sin t\vec{i}+2\cos t\vec{j}-10\cos t\sin t\vec{k}speed:v=4+100cos2tsin2t\text{speed:}\quad |\vec{v}| = \sqrt{4+100\cos^2t\sin^2t}acceleration:a(t)=dvdt=2costi2sintj10cos2tk\text{acceleration:}\quad \vec{a}(t) = {d\vec{v}\over dt} = -2\cos t\vec{i}-2\sin t\vec{j}-10\cos 2t\vec{k}

Differentiation rules

Let u\vec{u} and v\vec{v} be differentiable vector functions of tt, C\vec{C} a constant vector, cc any scalar, and ff any differentiable scalar function.

  • Constant Function Rule: ddtC=0{d\over dt}\vec{C}=\vec{0}

  • Scalar Multiple Rules: ddt[cu(t)]=cddt[u(t)]{d\over dt}[c\vec{u}(t)] = c{d\over dt}[\vec{u}(t)]

  • ddt[f(t)u(t)]=ddt[f(t)]u(t)+f(t)ddt[u(t)]{d\over dt}[f(t)\vec{u}(t)] = {d\over dt}[f(t)]\vec{u}(t) + f(t){d\over dt}[\vec{u}(t)]

  • Sum Rule: ddt[u(t)+v(t)]=ddt[u(t)]+ddt[v(t)]{d\over dt}[\vec{u}(t)+\vec{v}(t)] = {d\over dt}[\vec{u}(t)] + {d\over dt}[\vec{v}(t)]

  • Difference Rule: ddt[u(t)v(t)]=ddt[u(t)]ddt[v(t)]{d\over dt}[\vec{u}(t)-\vec{v}(t)] = {d\over dt}[\vec{u}(t)] - {d\over dt}[\vec{v}(t)]

  • Dot Product Rule: ddt[u(t)v(t)]=ddt[u(t)]v(t)+u(t)ddt[v(t)]{d\over dt}[\vec{u}(t)\cdot\vec{v}(t)] = {d\over dt}[\vec{u}(t)]\cdot\vec{v}(t) + \vec{u}(t)\cdot{d\over dt}[\vec{v}(t)]

  • Cross Product Rule: ddt[u(t)×v(t)]=ddt[u(t)]×v(t)+u(t)×ddt[v(t)]{d\over dt}[\vec{u}(t)\times \vec{v}(t)] = {d\over dt}[\vec{u}(t)]\times\vec{v}(t) + \vec{u}(t)\times{d\over dt}[\vec{v}(t)]

  • Chain Rule: ddt[u(f(t))]=ddf(t)[u[f(t))]ddt[f(t)]{d\over dt}[\vec{u}(f(t))] = {d\over df(t)}[\vec{u}[f(t))]{d\over dt}[f(t)]

Vector functions of constant length

If r(t)\vec{r}(t) is a differentiable vector function of tt of constant length, i.e., r(t)=c|\vec{r}(t)|=c, then

rddt[r(t)]=ddt[12r(t)2]=0.\vec{r}\cdot{d\over dt}[\vec{r}(t)] = {d\over dt}\left[{1\over 2}|\vec{r}(t)|^2\right]=0.

Integrals of vector functions

Definition The indefinite integral of r\vec{r} with respect to tt is the set of all antiderivatives of r\vec{r}, denoted as r(t)dt\int \vec{r}(t)dt. If R\vec{R} is any antiderivative of r\vec{r}, then r(t)dt=R(t)+C.\int \vec{r}(t)dt=\vec{R}(t)+\vec{C}.

Example: ((cost)i+j2tk)dt=(sint)i+tjt2k+C.\int((\cos t)\vec i + \vec j - 2t\vec k)dt = (\sin t)\vec i + t\vec j - t^2\vec k + \vec C.

Definition If the components of r(t)=f(t)i+g(t)j+h(t)k\vec{r}(t)=f(t)\vec i+g(t)\vec j+h(t)\vec k are integrable over [a,b][a,b], then so is r\vec r, and the definite integral of r\vec r from aa to bb is abr(t)dt=(abf(t)dt)i+(abg(t)dt)j+(abh(t)dt)k.\int_a^b\vec r(t)dt=\left(\int_a^bf(t)dt\right)\vec i+\left(\int_a^bg(t)dt\right)\vec j+\left(\int_a^bh(t)dt\right)\vec k.

Fundamental theorem of calculus for vector functions

If dR(t)dt=r(t),{d\vec{R}(t)\over dt} = \vec{r}(t), we have abr(t)dt=R(t)]ab=R(b)R(a).\int_a^b\vec r(t)dt= \left.\vec{R}(t)\right]_{a}^b=\vec{R}(b)-\vec{R}(a).

Example: Suppose we do not know the path of a hang glider, but only its acceleration vector a(t)=(3cost)i(3sint)j+2k\vec a(t) = -(3 \cos t)\vec i - (3 \sin t)\vec j + 2\vec k. We also know that the glider departed from the point (4,0,0)(4, 0, 0) with velocity v(0)=3j\vec v(0) = 3\vec j at time t=0t = 0. Find the glider’s position as a function r(t)\vec r(t) of tt.

Solution: v(t)=a(t)dt=(3sint)i+(3cost)j+2tk+C1\vec v(t)=\int\vec a(t)dt= -(3 \sin t)\vec i + (3 \cos t)\vec j + 2t\vec k + \vec {C_1} Since v(0)=3j\vec v(0) = 3\vec j, we know  C1=0\ \vec {C_1}=\vec 0 and v(t)=(3sint)i+(3cost)j+2tk\vec v(t)= -(3 \sin t)\vec i + (3 \cos t)\vec j + 2t\vec k. r(t)=v(t)dt=(3cost)i+(3sint)j+t2k+C2\vec r(t)=\int\vec v(t)dt= (3 \cos t)\vec i + (3 \sin t)\vec j + t^2\vec k + \vec {C_2} Since r(0)=(4,0,0)\vec r(0) = (4,0,0), we know  C2=(1,0,0)\ \vec {C_2}=(1,0,0) and r(t)=(3cost+1)i+(3sint)j+t2k\vec r(t)= (3 \cos t+1)\vec i + (3 \sin t)\vec j + t^2\vec k.

reset() var('t') a = vector((-3*cos(t), -3*sin(t), 2)) v0 = vector((0,3,0)) v = integral(a,t) + v0 - integral(a,t).substitute(t=0) r0 = vector((4,0,0)) r = integral(v,t) + r0 - integral(v,t).substitute(t=0) show(r) parametric_plot3d(r, (t, 0, 1), color = 'red', thickness = 3)

(3cos(t)+1,3sin(t),t2)\displaystyle \left(3 \, \cos\left(t\right) + 1,\,3 \, \sin\left(t\right),\,t^{2}\right)

Graphics3d Object

Ideal projectile motion

d2rdt2=gj{d^2\vec{r}\over dt^2}=-g\vec j

Height, flight time, and range for ideal projectile motion

For ideal projectile motion, when an object is launched from the origin over a horizontal surface with an initial speed v0v_0 and launch angle α\alpha:

Since v(t)=gtj+C\vec{v}(t)=-gt\vec{j}+\vec{C} and the velocity at t=0t=0 is v(0)=v0cosαi+v0sinαj.\vec{v}(0)=v_0\cos\alpha\vec{i} + v_0\sin\alpha\vec{j}. So we have v(t)=gtj+v0cosαi+v0sinαj.\vec{v}(t)=-gt\vec{j}+v_0\cos\alpha\vec{i} + v_0\sin\alpha\vec{j}. So the position vector is r(t)=12gt2j+v0cosαti+v0sinαtj\vec{r}(t)=-{1\over 2}gt^2\vec{j}+v_0\cos\alpha t\vec{i} +v_0\sin\alpha t\vec{j} since the starting point is 0.

  • Maximum height: v02sin2α2gv_0^2\sin^2\alpha\over2g

The height is 12gt2+v0sinαt-{1\over 2}gt^2+v_0\sin\alpha t, which has the maximum value when t=v0sinα/gt=v_0\sin\alpha/g. So the maximum height is v02sin2α2g{v_0^2\sin^2\alpha\over 2g}

  • Flight time: 2v0sinαg2v_0\sin\alpha\over g

When t=2v0sinα/gt=2v_0\sin\alpha/g, the height becomes 00.

  • Range: 2v02sinαcosαg2v_0^2\sin\alpha\cos\alpha\over g

The range happens when t=2v0sinα/gt=2v_0\sin\alpha/g, so the total range is 2v02sinαcosαg{2v_0^2\sin\alpha\cos\alpha\over g}

reset() var('g t v0 alpha') %display latex a = vector((0, -g)) v0 = vector((v0*cos(alpha), v0*sin(alpha))) v = integral(a,t) + v0 - integral(a,t).substitute(t=0) r0 = vector((0,0)) r = integral(v,t) + r0 - integral(v,t).substitute(t=0) print('The position vector is ', r) t1 = solve(r[1].diff(t)==0, t) print('The maximum height happens when', t1[0], ' and the height is ', r[1].substitute(t1[0])) t_total = solve(r[1]==0, t) print('The total time is ', t_total[0], 'and the range is ', r[0].substitute(t_total[0]))
The position vector is (t*v0*cos(alpha), -1/2*g*t^2 + t*v0*sin(alpha)) The maximum height happens when t == v0*sin(alpha)/g and the height is 1/2*v0^2*sin(alpha)^2/g The total time is t == 2*v0*sin(alpha)/g and the range is 2*v0^2*cos(alpha)*sin(alpha)/g

Projectile motion with wind gusts

A baseball is hit when it is 1m above the ground. It leaves the bat with an initial speed of 5050 m/s, making an angle of 20° with the horizontal. At the instant the ball is hit, an instantaneous gust of wind blows in the horizontal direction directly opposite the direction the ball is taking toward the outfield, adding a component of 2.5i-2.5\vec{i} (m/s) to the ball's initial velocity (2.52.5 m/s = 99 km/h).

(a) Find a vector equation (position vector) for the baseball path.

Since v(t)=gtj+C\vec{v}(t)=-gt\vec{j}+\vec{C} and the velocity at t=0t=0 is v(0)=(50cos20o2.5)i+50sin20oj.\vec{v}(0)=(50\cos20^o-2.5)\vec{i} + 50\sin20^o\vec{j}. So we have v(t)=gtj+(50cos20o2.5)i+50sin20oj.\vec{v}(t)=-gt\vec{j}+(50\cos20^o-2.5)\vec{i} + 50\sin20^o\vec{j}. So the position vector is r(t)=12gt2j+(50cos20o2.5)ti+(50sin20ot+1)j\vec{r}(t)=-{1\over 2}gt^2\vec{j}+(50\cos20^o-2.5) t\vec{i} +(50\sin20^ot+1)\vec{j} since the starting point is (0,1).

(b) How high does the baseball go, and when does it reach maximum height?

The height is (50sin20ot+1)12gt2(50\sin20^ot+1)-{1\over 2}gt^2, which reaches the maximum when t=50sin20o/gt=50\sin20^o/g. So the maximum height is 2500sin220o/g+12500\sin^220^o/g+1.

(c) Assuming that the ball is not caught, find its range and flight time.

The total time the ball travels is when (50sin20ot+1)12gt2=0(50\sin20^ot+1)-{1\over 2}gt^2=0. Then we can also find the range based on the total time.

reset() var('g t v0 alpha') %display latex g = 9.8 # the gravity a = vector((0, -g)) s0 = 50 alpha = pi/9 v0 = vector((s0*cos(alpha), s0*sin(alpha))) + vector((-2.5,0)) v = integral(a,t) + v0 - integral(a,t).substitute(t=0) r0 = vector((0,1)) r = integral(v,t) + r0 - integral(v,t).substitute(t=0) print('The position vector is ', r) t1 = solve(r[1].diff(t)==0, t) print('The maximum height happens when', t1[0], ' and the height is ', r[1].substitute(t1[0])) t_total = solve([r[1]==0], t) display(t_total) print('The total time is ', t_total[1], 'and the range is ', r[0].substitute(t_total[1])) p = parametric_plot(r, (t, 0, t_total[1].rhs())) p += point([r.substitute(t1[0])], color = 'red', pointsize = 20) p += point([r.substitute(t_total[1])], color = 'red', pointsize = 20) p.show()
The position vector is (t*(50*cos(1/9*pi) - 2.5), -4.9*t^2 + 50*t*sin(1/9*pi) + 1) The maximum height happens when t == 250/49*sin(1/9*pi) and the height is 127.55102040816325*sin(1/9*pi)^2 + 1

[t=14962500sin(19π)2+490+25049sin(19π),t=14962500sin(19π)2+490+25049sin(19π)]\displaystyle \left[t = -\frac{1}{49} \, \sqrt{62500 \, \sin\left(\frac{1}{9} \, \pi\right)^{2} + 490} + \frac{250}{49} \, \sin\left(\frac{1}{9} \, \pi\right), t = \frac{1}{49} \, \sqrt{62500 \, \sin\left(\frac{1}{9} \, \pi\right)^{2} + 490} + \frac{250}{49} \, \sin\left(\frac{1}{9} \, \pi\right)\right]

The total time is t == 1/49*sqrt(62500*sin(1/9*pi)^2 + 490) + 250/49*sin(1/9*pi) and the range is 1/49*(sqrt(62500*sin(1/9*pi)^2 + 490) + 250*sin(1/9*pi))*(50*cos(1/9*pi) - 2.5)
Image in a Jupyter notebook