Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Generate homomesic graphs wrt independent set toggling.

36 views
from sage.graphs.independent_sets import IndependentSets def toggle_set(g, indep, vertex): """toggle vertex v in independent set indep wrt graph g""" # FIXME gotta be a better way to toggle an element s1 = indep.symmetric_difference(Set([vertex])) if g.is_independent_set(s1): return s1 else: return indep def toggle_lis(g, indep, lis): """toggle a list of vertices in order""" for i in lis: indep = toggle_set(g, indep, i) return indep def toggle_orbit_lis(g, indep, lis): """return a list of the elements in an orbit""" s0 = Set([i for i in indep]) tot = [s0] s1 = toggle_lis(g, s0, lis) while s1 != s0: tot.append(s1) s1 = toggle_lis(g, s1, lis) return tot def orbs(g, lis): """return all orbits for a given toggle order""" iset = Set(Set(i) for i in IndependentSets(g)) orbs = [] while not iset.is_empty(): st = iset.an_element() orb = toggle_orbit_lis(g, st, lis) orbs.append(orb) iset = iset.difference(Set(orb)) return orbs def avg_weights(g, lis): """return a list of the average weights of the orbits""" return [Integer(sum(len(i) for i in s))/len(s) for s in orbs(g,lis)] def rand_range(n): """generate a random permuation of range(n)""" a = range(n) sage.misc.prandom.shuffle(a) return a def find_homomesic(n, k): """find homomesic graphs of order n. Try k random orderings""" l = [] count = 0 for g in graphs.nauty_geng("{0} -c".format(n)): if len(set(avg_weights(g, range(n)))) == 1: if all(len(set(avg_weights(g, rand_range(n)))) == 1 for i in range(k)): count += 1 print count, g.to_dictionary() g.show() l.append(g) return l find_homomesic(5, 30)
1 {0: [3, 4], 1: [3], 2: [4], 3: [0, 1, 4], 4: [0, 2, 3]}
2 {0: [2, 3, 4], 1: [3, 4], 2: [0, 3, 4], 3: [0, 1, 2, 4], 4: [0, 1, 2, 3]}
3 {0: [2, 3, 4], 1: [2, 3, 4], 2: [0, 1, 3, 4], 3: [0, 1, 2, 4], 4: [0, 1, 2, 3]}
4 {0: [1, 2, 3, 4], 1: [0, 2, 3, 4], 2: [0, 1, 3, 4], 3: [0, 1, 2, 4], 4: [0, 1, 2, 3]}
[Graph on 5 vertices, Graph on 5 vertices, Graph on 5 vertices, Graph on 5 vertices]
find_homomesic(6,30)
1 {0: [4], 1: [4], 2: [5], 3: [5], 4: [0, 1, 5], 5: [2, 3, 4]}
2 {0: [3, 5], 1: [4, 5], 2: [4], 3: [0, 5], 4: [1, 2], 5: [0, 1, 3]}
3 {0: [3, 4, 5], 1: [4, 5], 2: [5], 3: [0, 4, 5], 4: [0, 1, 3, 5], 5: [0, 1, 2, 3, 4]}
4 {0: [3, 4, 5], 1: [3, 4], 2: [5], 3: [0, 1, 4, 5], 4: [0, 1, 3, 5], 5: [0, 2, 3, 4]}
5 {0: [3, 4], 1: [3, 5], 2: [4, 5], 3: [0, 1, 4, 5], 4: [0, 2, 3, 5], 5: [1, 2, 3, 4]}
6 {0: [2, 4, 5], 1: [3, 5], 2: [0, 4, 5], 3: [1, 5], 4: [0, 2, 5], 5: [0, 1, 2, 3, 4]}
7 {0: [2, 3, 4, 5], 1: [5], 2: [0, 3, 4, 5], 3: [0, 2, 4, 5], 4: [0, 2, 3, 5], 5: [0, 1, 2, 3, 4]}
8 {0: [2, 3, 4, 5], 1: [3, 4, 5], 2: [0, 3, 4, 5], 3: [0, 1, 2, 4, 5], 4: [0, 1, 2, 3, 5], 5: [0, 1, 2, 3, 4]}
9 {0: [2, 3, 4, 5], 1: [2, 3, 4, 5], 2: [0, 1, 3, 4, 5], 3: [0, 1, 2, 4, 5], 4: [0, 1, 2, 3, 5], 5: [0, 1, 2, 3, 4]}
10 {0: [1, 2, 3, 4, 5], 1: [0, 2, 3, 4, 5], 2: [0, 1, 3, 4, 5], 3: [0, 1, 2, 4, 5], 4: [0, 1, 2, 3, 5], 5: [0, 1, 2, 3, 4]}
[Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices, Graph on 6 vertices]
find_homomesic(7,30)
1 {0: [4, 6], 1: [4], 2: [5, 6], 3: [5, 6], 4: [0, 1, 6], 5: [2, 3], 6: [0, 2, 3, 4]}
2 {0: [4, 6], 1: [4, 6], 2: [5], 3: [5], 4: [0, 1, 6], 5: [2, 3, 6], 6: [0, 1, 4, 5]}
3 {0: [4, 6], 1: [4], 2: [5, 6], 3: [5], 4: [0, 1, 6], 5: [2, 3, 6], 6: [0, 2, 4, 5]}
4 {0: [4, 5, 6], 1: [4], 2: [5], 3: [6], 4: [0, 1, 5, 6], 5: [0, 2, 4, 6], 6: [0, 3, 4, 5]}
5 {0: [4, 6], 1: [4, 6], 2: [5], 3: [5], 4: [0, 1, 5, 6], 5: [2, 3, 4, 6], 6: [0, 1, 4, 5]}
6 {0: [4, 6], 1: [4], 2: [5, 6], 3: [5], 4: [0, 1, 5, 6], 5: [2, 3, 4, 6], 6: [0, 2, 4, 5]}
7 {0: [3, 6], 1: [4, 6], 2: [5, 6], 3: [0, 6], 4: [1], 5: [2], 6: [0, 1, 2, 3]}
8 {0: [3, 5, 6], 1: [4, 6], 2: [5, 6], 3: [0, 5, 6], 4: [1, 6], 5: [0, 2, 3, 6], 6: [0, 1, 2, 3, 4, 5]}
9 {0: [3, 4, 6], 1: [4, 5, 6], 2: [5], 3: [0], 4: [0, 1], 5: [1, 2, 6], 6: [0, 1, 5]}
10 {0: [3, 4, 5, 6], 1: [4, 5, 6], 2: [5, 6], 3: [0, 4, 5, 6], 4: [0, 1, 3, 5, 6], 5: [0, 1, 2, 3, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
11 {0: [3, 4, 5, 6], 1: [3, 4, 5], 2: [6], 3: [0, 1, 4, 5, 6], 4: [0, 1, 3, 5, 6], 5: [0, 1, 3, 4, 6], 6: [0, 2, 3, 4, 5]}
12 {0: [3, 4, 5, 6], 1: [3, 4], 2: [5, 6], 3: [0, 1, 4, 5, 6], 4: [0, 1, 3, 5, 6], 5: [0, 2, 3, 4, 6], 6: [0, 2, 3, 4, 5]}
13 {0: [3, 4, 6], 1: [3, 5, 6], 2: [4, 5], 3: [0, 1, 4, 5, 6], 4: [0, 2, 3, 5, 6], 5: [1, 2, 3, 4, 6], 6: [0, 1, 3, 4, 5]}
14 {0: [2, 4, 6], 1: [3, 5, 6], 2: [0, 4, 6], 3: [1, 5, 6], 4: [0, 2, 6], 5: [1, 3], 6: [0, 1, 2, 3, 4]}
15 {0: [2, 4, 5, 6], 1: [3, 5, 6], 2: [0, 4, 6], 3: [1, 5], 4: [0, 2, 6], 5: [0, 1, 3], 6: [0, 1, 2, 4]}
16 {0: [2, 4, 5, 6], 1: [3, 5, 6], 2: [0, 4], 3: [1, 5, 6], 4: [0, 2], 5: [0, 1, 3, 6], 6: [0, 1, 3, 5]}
17 {0: [2, 4, 5, 6], 1: [3, 6], 2: [0, 4, 5, 6], 3: [1, 6], 4: [0, 2, 5, 6], 5: [0, 2, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
18 {0: [2, 4, 5, 6], 1: [3, 5, 6], 2: [0, 4, 5, 6], 3: [1, 5, 6], 4: [0, 2, 5, 6], 5: [0, 1, 2, 3, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
19 {0: [2, 3, 4, 5, 6], 1: [5, 6], 2: [0, 3, 4, 5, 6], 3: [0, 2, 4, 5, 6], 4: [0, 2, 3, 5, 6], 5: [0, 1, 2, 3, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
20 {0: [2, 3, 4, 5, 6], 1: [3, 4, 5, 6], 2: [0, 3, 4, 5, 6], 3: [0, 1, 2, 4, 5, 6], 4: [0, 1, 2, 3, 5, 6], 5: [0, 1, 2, 3, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
21 {0: [2, 3, 4, 5, 6], 1: [2, 3, 4, 6], 2: [0, 1, 4, 5, 6], 3: [0, 1, 5, 6], 4: [0, 1, 2, 5, 6], 5: [0, 2, 3, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
22 {0: [2, 3, 4, 5, 6], 1: [2, 3, 4, 5, 6], 2: [0, 1, 3, 4, 5, 6], 3: [0, 1, 2, 4, 5, 6], 4: [0, 1, 2, 3, 5, 6], 5: [0, 1, 2, 3, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
23 {0: [1, 2, 3, 4, 5, 6], 1: [0, 2, 3, 4, 5, 6], 2: [0, 1, 3, 4, 5, 6], 3: [0, 1, 2, 4, 5, 6], 4: [0, 1, 2, 3, 5, 6], 5: [0, 1, 2, 3, 4, 6], 6: [0, 1, 2, 3, 4, 5]}
[Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices, Graph on 7 vertices]
find_homomesic(8, 30)
1 {0: [5, 7], 1: [5], 2: [6], 3: [6], 4: [7], 5: [0, 1, 7], 6: [2, 3, 7], 7: [0, 4, 5, 6]}
2 {0: [5, 6], 1: [5], 2: [6], 3: [7], 4: [7], 5: [0, 1, 6, 7], 6: [0, 2, 5, 7], 7: [3, 4, 5, 6]}
3 {0: [4, 6], 1: [5, 7], 2: [6, 7], 3: [7], 4: [0, 6], 5: [1, 7], 6: [0, 2, 4, 7], 7: [1, 2, 3, 5, 6]}
4 {0: [4, 6, 7], 1: [5, 7], 2: [6, 7], 3: [7], 4: [0, 6, 7], 5: [1, 7], 6: [0, 2, 4, 7], 7: [0, 1, 2, 3, 4, 5, 6]}
5 {0: [4, 6, 7], 1: [5, 7], 2: [5], 3: [6, 7], 4: [0, 6, 7], 5: [1, 2, 7], 6: [0, 3, 4, 7], 7: [0, 1, 3, 4, 5, 6]}
6 {0: [4, 5, 6, 7], 1: [5, 6, 7], 2: [6, 7], 3: [7], 4: [0, 5, 6, 7], 5: [0, 1, 4, 6, 7], 6: [0, 1, 2, 4, 5, 7], 7: [0, 1, 2, 3, 4, 5, 6]}
7 {0: [4, 6], 1: [4, 6], 2: [5, 7], 3: [5, 7], 4: [0, 1, 6, 7], 5: [2, 3, 7], 6: [0, 1, 4], 7: [2, 3, 4, 5]}
8 {0: [4, 6, 7], 1: [4, 6, 7], 2: [5], 3: [5], 4: [0, 1, 6, 7], 5: [2, 3, 7], 6: [0, 1, 4, 7], 7: [0, 1, 4, 5, 6]}
9 {0: [4, 6, 7], 1: [4, 6], 2: [5, 7], 3: [5], 4: [0, 1, 6, 7], 5: [2, 3, 7], 6: [0, 1, 4, 7], 7: [0, 2, 4, 5, 6]}
10 {0: [4, 6], 1: [4, 6], 2: [5, 7], 3: [5, 7], 4: [0, 1, 6, 7], 5: [2, 3, 7], 6: [0, 1, 4, 7], 7: [2, 3, 4, 5, 6]}
11 {0: [4, 6, 7], 1: [4, 7], 2: [5, 6], 3: [5, 7], 4: [0, 1, 6, 7], 5: [2, 3], 6: [0, 2, 4, 7], 7: [0, 1, 3, 4, 6]}
12 {0: [4, 6, 7], 1: [4], 2: [5, 6, 7], 3: [5, 6], 4: [0, 1, 6, 7], 5: [2, 3, 7], 6: [0, 2, 3, 4, 7], 7: [0, 2, 4, 5, 6]}
13 {0: [4, 6], 1: [4, 7], 2: [5, 6, 7], 3: [5, 6], 4: [0, 1, 6, 7], 5: [2, 3, 7], 6: [0, 2, 3, 4, 7], 7: [1, 2, 4, 5, 6]}
14 {0: [4, 6], 1: [4], 2: [5, 6, 7], 3: [5, 6, 7], 4: [0, 1, 6, 7], 5: [2, 3, 7], 6: [0, 2, 3, 4, 7], 7: [2, 3, 4, 5, 6]}
15 {0: [4, 6], 1: [4, 6], 2: [5, 7], 3: [5, 7], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 1, 4, 5], 7: [2, 3, 4, 5]}
16 {0: [4, 6, 7], 1: [4, 6, 7], 2: [5], 3: [5], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 1, 4, 5, 7], 7: [0, 1, 4, 5, 6]}
17 {0: [4, 6, 7], 1: [4, 6], 2: [5, 7], 3: [5], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 1, 4, 5, 7], 7: [0, 2, 4, 5, 6]}
18 {0: [4, 6], 1: [4, 6], 2: [5, 7], 3: [5, 7], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 1, 4, 5, 7], 7: [2, 3, 4, 5, 6]}
19 {0: [4, 6], 1: [4, 7], 2: [5, 6], 3: [5, 7], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 2, 4, 5], 7: [1, 3, 4, 5]}
20 {0: [4, 6, 7], 1: [4], 2: [5, 6, 7], 3: [5], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 2, 4, 5, 7], 7: [0, 2, 4, 5, 6]}
21 {0: [4, 6], 1: [4, 7], 2: [5, 6, 7], 3: [5], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 2, 4, 5, 7], 7: [1, 2, 4, 5, 6]}
22 {0: [4, 6], 1: [4, 7], 2: [5, 6], 3: [5, 7], 4: [0, 1, 6, 7], 5: [2, 3, 6, 7], 6: [0, 2, 4, 5, 7], 7: [1, 3, 4, 5, 6]}
23 {0: [4, 5, 6, 7], 1: [4, 6, 7], 2: [5], 3: [6], 4: [0, 1, 5, 7], 5: [0, 2, 4, 7], 6: [0, 1, 3, 7], 7: [0, 1, 4, 5, 6]}
24 {0: [4, 5, 6, 7], 1: [4, 6], 2: [5], 3: [7], 4: [0, 1, 5, 6, 7], 5: [0, 2, 4, 6, 7], 6: [0, 1, 4, 5, 7], 7: [0, 3, 4, 5, 6]}
25 {0: [4, 5, 6], 1: [4, 6], 2: [5, 7], 3: [7], 4: [0, 1, 5, 6, 7], 5: [0, 2, 4, 6, 7], 6: [0, 1, 4, 5, 7], 7: [2, 3, 4, 5, 6]}
26 {0: [4, 5, 6], 1: [4, 7], 2: [5, 7], 3: [6], 4: [0, 1, 5, 6, 7], 5: [0, 2, 4, 6, 7], 6: [0, 3, 4, 5, 7], 7: [1, 2, 4, 5, 6]}
27 {0: [4, 6], 1: [4, 6], 2: [5, 6, 7], 3: [5, 7], 4: [0, 1, 5], 5: [2, 3, 4, 7], 6: [0, 1, 2, 7], 7: [2, 3, 5, 6]}
28 {0: [4, 6, 7], 1: [4, 6, 7], 2: [5], 3: [5], 4: [0, 1, 5, 6, 7], 5: [2, 3, 4, 6, 7], 6: [0, 1, 4, 5, 7], 7: [0, 1, 4, 5, 6]}
29 {0: [4, 6], 1: [4, 6], 2: [5, 7], 3: [5, 7], 4: [0, 1, 5, 6, 7], 5: [2, 3, 4, 6, 7], 6: [0, 1, 4, 5, 7], 7: [2, 3, 4, 5, 6]}
30 {0: [4, 6, 7], 1: [4], 2: [5, 6, 7], 3: [5], 4: [0, 1, 5, 6, 7], 5: [2, 3, 4, 6, 7], 6: [0, 2, 4, 5, 7], 7: [0, 2, 4, 5, 6]}
31 {0: [4, 6], 1: [4, 7], 2: [5, 6], 3: [5, 7], 4: [0, 1, 5, 6, 7], 5: [2, 3, 4, 6, 7], 6: [0, 2, 4, 5, 7], 7: [1, 3, 4, 5, 6]}
32 {0: [3, 6], 1: [4, 6, 7], 2: [5, 7], 3: [0, 6], 4: [1, 7], 5: [2, 7], 6: [0, 1, 3], 7: [1, 2, 4, 5]}
33 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 7], 3: [0, 6], 4: [1, 7], 5: [2, 7], 6: [0, 1, 3], 7: [0, 1, 2, 4, 5]}
34 {0: [3, 6, 7], 1: [4, 6], 2: [5, 7], 3: [0, 6, 7], 4: [1], 5: [2, 7], 6: [0, 1, 3, 7], 7: [0, 2, 3, 5, 6]}
35 {0: [3, 6], 1: [4, 6, 7], 2: [5, 7], 3: [0, 6], 4: [1, 7], 5: [2, 7], 6: [0, 1, 3, 7], 7: [1, 2, 4, 5, 6]}
36 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 7], 3: [0, 6, 7], 4: [1, 7], 5: [2, 7], 6: [0, 1, 3], 7: [0, 1, 2, 3, 4, 5]}
37 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 7], 3: [0, 6, 7], 4: [1], 5: [2, 7], 6: [0, 1, 3, 7], 7: [0, 1, 2, 3, 5, 6]}
38 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 7], 3: [0, 6], 4: [1, 7], 5: [2, 7], 6: [0, 1, 3, 7], 7: [0, 1, 2, 4, 5, 6]}
39 {0: [3, 6, 7], 1: [4, 6], 2: [5, 7], 3: [0, 6, 7], 4: [1, 7], 5: [2, 7], 6: [0, 1, 3, 7], 7: [0, 2, 3, 4, 5, 6]}
40 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 6], 3: [0, 6], 4: [1, 7], 5: [2, 7], 6: [0, 1, 2, 3], 7: [0, 1, 4, 5]}
41 {0: [3, 6, 7], 1: [4, 6], 2: [5, 6], 3: [0, 6, 7], 4: [1, 7], 5: [2, 7], 6: [0, 1, 2, 3], 7: [0, 3, 4, 5]}
42 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 6, 7], 3: [0, 6, 7], 4: [1], 5: [2], 6: [0, 1, 2, 3, 7], 7: [0, 1, 2, 3, 6]}
43 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 6, 7], 3: [0, 6], 4: [1, 7], 5: [2], 6: [0, 1, 2, 3, 7], 7: [0, 1, 2, 4, 6]}
44 {0: [3, 6, 7], 1: [4, 6], 2: [5, 6, 7], 3: [0, 6, 7], 4: [1, 7], 5: [2], 6: [0, 1, 2, 3, 7], 7: [0, 2, 3, 4, 6]}
45 {0: [3, 6, 7], 1: [4, 6, 7], 2: [5, 6], 3: [0, 6], 4: [1, 7], 5: [2, 7], 6: [0, 1, 2, 3, 7], 7: [0, 1, 4, 5, 6]}
46 {0: [3, 6, 7], 1: [4, 6], 2: [5, 6], 3: [0, 6, 7], 4: [1, 7], 5: [2, 7], 6: [0, 1, 2, 3, 7], 7: [0, 3, 4, 5, 6]}
47 {0: [3, 5, 6, 7], 1: [4, 6, 7], 2: [5, 7], 3: [0, 6], 4: [1, 7], 5: [0, 2], 6: [0, 1, 3], 7: [0, 1, 2, 4]}
48 {0: [3, 5, 6, 7], 1: [4, 6, 7], 2: [5], 3: [0, 6], 4: [1, 7], 5: [0, 2, 7], 6: [0, 1, 3], 7: [0, 1, 4, 5]}
49 {0: [3, 5, 6, 7], 1: [4, 6, 7], 2: [5], 3: [0, 6, 7], 4: [1], 5: [0, 2], 6: [0, 1, 3, 7], 7: [0, 1, 3, 6]}
50 {0: [3, 5, 6, 7], 1: [4, 6], 2: [5, 7], 3: [0, 6, 7], 4: [1], 5: [0, 2], 6: [0, 1, 3, 7], 7: [0, 2, 3, 6]}
51 {0: [3, 5, 6, 7], 1: [4, 7], 2: [5, 6], 3: [0, 6], 4: [1, 7], 5: [0, 2], 6: [0, 2, 3, 7], 7: [0, 1, 4, 6]}
52 {0: [3, 5, 6, 7], 1: [4, 6, 7], 2: [5, 7], 3: [0, 7], 4: [1, 6], 5: [0, 2], 6: [0, 1, 4], 7: [0, 1, 2, 3]}
53 {0: [3, 5, 6, 7], 1: [4, 6, 7], 2: [5, 7], 3: [0], 4: [1, 6], 5: [0, 2, 7], 6: [0, 1, 4], 7: [0, 1, 2, 5]}
54 {0: [3, 5, 6, 7], 1: [4, 6, 7], 2: [5], 3: [0, 7], 4: [1, 6], 5: [0, 2, 7], 6: [0, 1, 4], 7: [0, 1, 3, 5]}
55 {0: [3, 5, 6, 7], 1: [4, 6, 7], 2: [5], 3: [0], 4: [1, 6, 7], 5: [0, 2], 6: [0, 1, 4, 7], 7: [0, 1, 4, 6]}
56 {0: [3, 5, 6], 1: [4, 6], 2: [5, 7], 3: [0, 7], 4: [1, 6], 5: [0, 2, 7], 6: [0, 1, 4, 7], 7: [2, 3, 5, 6]}
57 {0: [3, 5, 6], 1: [4, 6, 7], 2: [5], 3: [0], 4: [1, 6, 7], 5: [0, 2, 7], 6: [0, 1, 4, 7], 7: [1, 4, 5, 6]}
58 {0: [3, 5, 7], 1: [4, 6, 7], 2: [5, 6], 3: [0, 7], 4: [1, 6], 5: [0, 2], 6: [1, 2, 4], 7: [0, 1, 3]}
59 {0: [3, 5, 7], 1: [4, 6, 7], 2: [6], 3: [0, 5, 7], 4: [1], 5: [0, 3, 7], 6: [1, 2, 7], 7: [0, 1, 3, 5, 6]}
60 {0: [3, 5, 7], 1: [4, 6, 7], 2: [7], 3: [0, 5, 7], 4: [1, 6, 7], 5: [0, 3], 6: [1, 4], 7: [0, 1, 2, 3, 4]}
61 {0: [3, 5, 6, 7], 1: [4, 7], 2: [6], 3: [0, 5, 6, 7], 4: [1, 7], 5: [0, 3], 6: [0, 2, 3], 7: [0, 1, 3, 4]}
62 {0: [3, 5, 6, 7], 1: [4, 7], 2: [6], 3: [0, 5, 6], 4: [1, 7], 5: [0, 3], 6: [0, 2, 3, 7], 7: [0, 1, 4, 6]}
63 {0: [3, 5, 6], 1: [4, 7], 2: [6], 3: [0, 5, 6], 4: [1, 7], 5: [0, 3, 7], 6: [0, 2, 3, 7], 7: [1, 4, 5, 6]}
64 {0: [3, 5, 7], 1: [4, 6, 7], 2: [6, 7], 3: [0, 5], 4: [1, 6], 5: [0, 3], 6: [1, 2, 4], 7: [0, 1, 2]}
Too many output messages (at most 256 per cell): attempting to terminate...