Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
67 views
ubuntu2004
Kernel: SageMath 9.5
g.base_extend(GF(3))

Dear Professor Ribet:

I am a senior student and I am reading your notes "Lectures on Serre's Conjectures". Now I meet some problem while trying to confirming the properties of the representation mentioned in section 2.4.2. You mentioned the elliptic curve y2+y=x3+x212x+2y^2+y=x^3+x^2-12x+2 and the mod 3 representation it induces, and by Serre's conjecture it arises from an eigenform of level 47 and weight 4. I have checked the ap(E)a_p(E) of the elliptic curve on LMFDB: https://www.lmfdb.org/EllipticCurve/Q/141/a/1.

We hope the coefficients are congruent mod 3 at all primes other than 3 and 47, since they should give the same mod 3 representation. However, just check the q2q^2 coefficients, the elliptic curve is 1 mod 3 and the eigenform is 0 or 2 mod 3 (since the minimal polynomial of a decomposes to a(a+1)2a(a+1)^2 mod 3), which are unequal.

At first I was afraid of that there is a typo for the expression and the polynomial for g and a (in the note), so I found the eigenform on LMFDB: https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/47/4/a/a/, and I again found that the q2q^2 should have coefficient congruent to 0 or 2. I also checked the Fourier coefficients of another newform in S4(Γ0(47))S_4(\Gamma_0(47)), https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/47/4/a/b/, and it couldn't solve the problem either.

So what is wrong here?

E = EllipticCurve([0,1,1,-12,2]); show(E)
y2+y=x3+x212x+2\renewcommand{\Bold}[1]{\mathbf{#1}}y^2 + y = x^{3} + x^{2} - 12 x + 2
show(factor(E.conductor()))
347\renewcommand{\Bold}[1]{\mathbf{#1}}3 \cdot 47
show(E.aplist(20))
[2,1,3,3,5,2,6,6]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[-2, 1, -3, -3, -5, 2, -6, -6\right]
rho = E.galois_representation(); rho
Compatible family of Galois representations associated to the Elliptic Curve defined by y^2 + y = x^3 + x^2 - 12*x + 2 over Rational Field
# all mod p reps are surjective: rho.non_surjective()
[]
M = ModularSymbols(Gamma0(47),4) f2 = M.hecke_operator(2).charpoly('x') show(factor(f2))
(x9)2(x3+5x22x12)2(x83x750x6+124x5+844x41549x35393x2+5418x+10316)2\renewcommand{\Bold}[1]{\mathbf{#1}}(x - 9)^{2} \cdot (x^{3} + 5 x^{2} - 2 x - 12)^{2} \cdot (x^{8} - 3 x^{7} - 50 x^{6} + 124 x^{5} + 844 x^{4} - 1549 x^{3} - 5393 x^{2} + 5418 x + 10316)^{2}
F2 = factor(f2) F2[1][0](-2)
4
F2[2][0](-2)
-2724
F2[2][0](-2) % 3
0

The above confirms what Ken wrote in the email, namely that the degree 8 eigenform has a mod-3 reduction that is consistent with it giving rise to the Galois representation mod 3 attached to EE.

Your mistake I think is you say "I found the eigenform in LMFDB". However, there are two entries with trivial character in the LMFDB in this space. Here's the other one: https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/47/4/a/b/

# It's also possible to use Sage to directly list the mod-3 newforms associated to a space of cusp forms...
S = CuspForms(Gamma0(47),4); show(S)
Cuspidal subspace of dimension 11 of Modular Forms space of dimension 13 for Congruence Subgroup Gamma0(47) of weight 4 over Rational Field\renewcommand{\Bold}[1]{\mathbf{#1}}\verb|Cuspidal|\verb| |\verb|subspace|\verb| |\verb|of|\verb| |\verb|dimension|\verb| |\verb|11|\verb| |\verb|of|\verb| |\verb|Modular|\verb| |\verb|Forms|\verb| |\verb|space|\verb| |\verb|of|\verb| |\verb|dimension|\verb| |\verb|13|\verb| |\verb|for|\verb| |\verb|Congruence|\verb| |\verb|Subgroup|\verb| |\verb|Gamma0(47)|\verb| |\verb|of|\verb| |\verb|weight|\verb| |\verb|4|\verb| |\verb|over|\verb| |\verb|Rational|\verb| |\verb|Field|
N = S.newforms('a'); N
[q + a0*q^2 + (-1/2*a0^2 - 5/2*a0 - 1)*q^3 + (a0^2 - 8)*q^4 + (a0^2 + a0 - 10)*q^5 + O(q^6), q + a1*q^2 + (2575/589584*a1^7 - 2899/147396*a1^6 - 36941/294792*a1^5 + 185647/294792*a1^4 + 170587/294792*a1^3 - 1116547/196528*a1^2 + 1034621/294792*a1 + 2162681/147396)*q^3 + (a1^2 - 8)*q^4 + (-7159/1179168*a1^7 - 3875/294792*a1^6 + 162005/589584*a1^5 + 298865/589584*a1^4 - 1925443/589584*a1^3 - 2464661/393056*a1^2 + 4843039/589584*a1 + 8400595/294792)*q^5 + O(q^6)]
g = N[1]; g
q + a1*q^2 + (2575/589584*a1^7 - 2899/147396*a1^6 - 36941/294792*a1^5 + 185647/294792*a1^4 + 170587/294792*a1^3 - 1116547/196528*a1^2 + 1034621/294792*a1 + 2162681/147396)*q^3 + (a1^2 - 8)*q^4 + (-7159/1179168*a1^7 - 3875/294792*a1^6 + 162005/589584*a1^5 + 298865/589584*a1^4 - 1925443/589584*a1^3 - 2464661/393056*a1^2 + 4843039/589584*a1 + 8400595/294792)*q^5 + O(q^6)
MS = g.modular_symbols(); MS
Modular Symbols subspace of dimension 16 of Modular Symbols space of dimension 24 for Gamma_0(47) of weight 4 with sign 0 over Rational Field
M3 = ModularSymbols(Gamma0(47), 4, base_ring=GF(3), sign=1); M3
Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3
D3 = M3.decomposition()
D3
[ Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3, Modular Symbols subspace of dimension 1 of Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3, Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3, Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3, Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3, Modular Symbols subspace of dimension 2 of Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3, Modular Symbols subspace of dimension 3 of Modular Symbols space of dimension 13 for Gamma_0(47) of weight 4 with sign 1 over Finite Field of size 3 ]
for D in D3: print(D.hecke_matrix(2).charpoly('x')(1))
1 0 1 1 1 1 1
for p in primes(100): print(p, D3[1].hecke_matrix(p), E.ap(p) % 3)
2 [1] 1 3 [1] 1 5 [0] 0 7 [0] 0 11 [1] 1 13 [2] 2 17 [0] 0 19 [0] 0 23 [0] 0 29 [1] 1 31 [1] 1 37 [1] 1 41 [0] 0 43 [2] 2 47 [1] 1 53 [0] 0 59 [0] 0 61 [1] 1 67 [2] 2 71 [1] 1 73 [1] 1 79 [0] 0 83 [2] 2 89 [1] 1 97 [1] 1