build open-axiom
2802
(|PlaneAlgebraicCurvePlot|)
|domain|
(((|PlaneAlgebraicCurvePlot|)
(|Join| (|PlottablePlaneCurveCategory|)
(CATEGORY |domain|
(SIGNATURE |makeSketch|
($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|)
(|Segment| (|Fraction| (|Integer|)))
(|Segment| (|Fraction| (|Integer|)))))
(SIGNATURE |refine| ($ $ (|DoubleFloat|))))))
(T |PlaneAlgebraicCurvePlot|))
(NIL)
"acplot.spad"
((|makeSketch| (*1 *1 *2 *3 *3 *4 *4)
(AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|isDomain| *3 (|Symbol|))
(|isDomain| *4 (|Segment| (|Fraction| (|Integer|))))
(|isDomain| *1 (|PlaneAlgebraicCurvePlot|))))
(|refine| (*1 *1 *1 *2)
(AND (|isDomain| *2 (|DoubleFloat|))
(|isDomain| *1 (|PlaneAlgebraicCurvePlot|)))))
((|yRange| (#1=((|Segment| #2=(|DoubleFloat|)) $) NIL T ELT))
(|xRange| (#1# NIL T ELT)) (|refine| (($ $ (|DoubleFloat|)) 164 T ELT))
(|makeSketch|
(($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|)
(|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|))))
103 T ELT))
(|listBranches| (((|List| (|List| (|Point| #2#))) $) 181 T ELT))
(|coerce| (((|OutputForm|) $) 195 T ELT)))
((|ACPLOT;coerce;$Of;42| ((|OutputForm|) $))
(|ACPLOT;listBranches;$L;41| ((|List| (|List| (|Point| (|DoubleFloat|)))) $))
(|ACPLOT;refine;$Df$;34| ($ $ (|DoubleFloat|)))
(|ACPLOT;makeSketch;P2S2S$;27|
($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|)
(|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|))))))
ACPLOT
(((|PlottablePlaneCurveCategory|) . T))
(((|CoercibleTo| (|OutputForm|)) . T) ((|PlottablePlaneCurveCategory|) . T))
((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}"))
(|makeSketch|
(($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|)
(|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|))))
"\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
(("documentation" 0 1687) ("ancestors" 0 1610) ("parents" 0 1570)
("abbreviation" 0 1563) ("predicates" 0 NIL) ("attributes" 0 NIL)
("signaturesAndLocals" 0 1224) ("superDomain" 0 NIL) ("operationAlist" 0 815)
("modemaps" 0 469) ("sourceFile" 0 455) ("dualSignature" 0 449)
("constructorModemap" 0 58) ("constructorKind" 0 49) ("constructorForm" 0 21))