build open-axiom
2802 (|PlaneAlgebraicCurvePlot|) |domain| (((|PlaneAlgebraicCurvePlot|) (|Join| (|PlottablePlaneCurveCategory|) (CATEGORY |domain| (SIGNATURE |makeSketch| ($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|))))) (SIGNATURE |refine| ($ $ (|DoubleFloat|)))))) (T |PlaneAlgebraicCurvePlot|)) (NIL) "acplot.spad" ((|makeSketch| (*1 *1 *2 *3 *3 *4 *4) (AND (|isDomain| *2 (|Polynomial| (|Integer|))) (|isDomain| *3 (|Symbol|)) (|isDomain| *4 (|Segment| (|Fraction| (|Integer|)))) (|isDomain| *1 (|PlaneAlgebraicCurvePlot|)))) (|refine| (*1 *1 *1 *2) (AND (|isDomain| *2 (|DoubleFloat|)) (|isDomain| *1 (|PlaneAlgebraicCurvePlot|))))) ((|yRange| (#1=((|Segment| #2=(|DoubleFloat|)) $) NIL T ELT)) (|xRange| (#1# NIL T ELT)) (|refine| (($ $ (|DoubleFloat|)) 164 T ELT)) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) 103 T ELT)) (|listBranches| (((|List| (|List| (|Point| #2#))) $) 181 T ELT)) (|coerce| (((|OutputForm|) $) 195 T ELT))) ((|ACPLOT;coerce;$Of;42| ((|OutputForm|) $)) (|ACPLOT;listBranches;$L;41| ((|List| (|List| (|Point| (|DoubleFloat|)))) $)) (|ACPLOT;refine;$Df$;34| ($ $ (|DoubleFloat|))) (|ACPLOT;makeSketch;P2S2S$;27| ($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))))) ACPLOT (((|PlottablePlaneCurveCategory|) . T)) (((|CoercibleTo| (|OutputForm|)) . T) ((|PlottablePlaneCurveCategory|) . T)) ((|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) (("documentation" 0 1687) ("ancestors" 0 1610) ("parents" 0 1570) ("abbreviation" 0 1563) ("predicates" 0 NIL) ("attributes" 0 NIL) ("signaturesAndLocals" 0 1224) ("superDomain" 0 NIL) ("operationAlist" 0 815) ("modemaps" 0 469) ("sourceFile" 0 455) ("dualSignature" 0 449) ("constructorModemap" 0 58) ("constructorKind" 0 49) ("constructorForm" 0 21))