Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

build open-axiom

54546 views
10574               
(|AlgebraicallyClosedField|)
|category|
(((|AlgebraicallyClosedField|) (|Category|)) (T |AlgebraicallyClosedField|))
(T)
(|Join| (|Field|) (|RadicalCategory|)
        (CATEGORY |domain| (SIGNATURE |rootOf| ($ (|Polynomial| $)))
         (SIGNATURE |rootOf| ($ (|SparseUnivariatePolynomial| $)))
         (SIGNATURE |rootOf| ($ (|SparseUnivariatePolynomial| $) (|Symbol|)))
         (SIGNATURE |rootsOf| ((|List| $) (|Polynomial| $)))
         (SIGNATURE |rootsOf| ((|List| $) (|SparseUnivariatePolynomial| $)))
         (SIGNATURE |rootsOf|
          ((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)))
         (SIGNATURE |zeroOf| ($ (|Polynomial| $)))
         (SIGNATURE |zeroOf| ($ (|SparseUnivariatePolynomial| $)))
         (SIGNATURE |zeroOf| ($ (|SparseUnivariatePolynomial| $) (|Symbol|)))
         (SIGNATURE |zerosOf| ((|List| $) (|Polynomial| $)))
         (SIGNATURE |zerosOf| ((|List| $) (|SparseUnivariatePolynomial| $)))
         (SIGNATURE |zerosOf|
          ((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)))))
"algfunc.spad"
((|rootOf| (*1 *1 *2)
  (AND (|isDomain| *2 (|Polynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))))
 (|rootOf| (*1 *1 *2)
  (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))))
 (|rootOf| (*1 *1 *2 *3)
  (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
       (|isDomain| *3 (|Symbol|))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))))
 (|rootsOf| (*1 *2 *3)
  (AND (|isDomain| *3 (|Polynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))
       (|isDomain| *2 (|List| *1))))
 (|rootsOf| (*1 *2 *3)
  (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))
       (|isDomain| *2 (|List| *1))))
 (|rootsOf| (*1 *2 *3 *4)
  (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
       (|isDomain| *4 (|Symbol|))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))
       (|isDomain| *2 (|List| *1))))
 (|zeroOf| (*1 *1 *2)
  (AND (|isDomain| *2 (|Polynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))))
 (|zeroOf| (*1 *1 *2)
  (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))))
 (|zeroOf| (*1 *1 *2 *3)
  (AND (|isDomain| *2 (|SparseUnivariatePolynomial| *1))
       (|isDomain| *3 (|Symbol|))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))))
 (|zerosOf| (*1 *2 *3)
  (AND (|isDomain| *3 (|Polynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))
       (|isDomain| *2 (|List| *1))))
 (|zerosOf| (*1 *2 *3)
  (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))
       (|isDomain| *2 (|List| *1))))
 (|zerosOf| (*1 *2 *3 *4)
  (AND (|isDomain| *3 (|SparseUnivariatePolynomial| *1))
       (|isDomain| *4 (|Symbol|))
       (|ofCategory| *1 (|AlgebraicallyClosedField|))
       (|isDomain| *2 (|List| *1)))))
((~= (#1=((|Boolean|) $ $) 7 T ELT))
 (|zerosOf| (((|List| $) (|Polynomial| $)) 99 T ELT)
  (((|List| $) (|SparseUnivariatePolynomial| $)) 98 T ELT)
  (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) 97 T ELT))
 (|zeroOf| (($ (|Polynomial| $)) 102 T ELT)
  (($ (|SparseUnivariatePolynomial| $)) 101 T ELT)
  (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 100 T ELT))
 (|zero?| ((#2=(|Boolean|) $) 22 T ELT))
 (|unitNormal|
  (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) 56 T
   ELT))
 (|unitCanonical| (($ $) 55 T ELT)) (|unit?| ((#3=(|Boolean|) $) 53 T ELT))
 (|subtractIfCan| (((|Maybe| $) $ $) 26 T ELT))
 (|squareFreePart| (($ $) 92 T ELT))
 (|squareFree| (#4=((|Factored| $) $) 91 T ELT)) (|sqrt| (($ $) 111 T ELT))
 (|sizeLess?| (((|Boolean|) $ $) 76 T ELT)) (|sample| (#5=($) 23 T CONST))
 (|rootsOf| (((|List| $) (|Polynomial| $)) 105 T ELT)
  (((|List| $) (|SparseUnivariatePolynomial| $)) 104 T ELT)
  (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) 103 T ELT))
 (|rootOf| (($ (|Polynomial| $)) 108 T ELT)
  (($ (|SparseUnivariatePolynomial| $)) 107 T ELT)
  (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) 106 T ELT))
 (|rem| (#6=($ $ $) 72 T ELT)) (|recip| (((|Union| $ "failed") $) 43 T ELT))
 (|quo| (#6# 73 T ELT))
 (|principalIdeal|
  (((|Record| (|:| |coef| #7=(|List| $)) (|:| |generator| $)) #7#) 67 T ELT))
 (|prime?| (((|Boolean|) $) 90 T ELT)) (|opposite?| ((#2# $ $) 20 T ELT))
 (|one?| (((|Boolean|) $) 45 T ELT))
 (|nthRoot| (($ $ #8=(|Integer|)) 110 T ELT))
 (|multiEuclidean| (((|Union| #9=(|List| $) #10="failed") #9# $) 69 T ELT))
 (|lcm| (#11=($ $ $) 61 T ELT) (#12=($ (|List| $)) 60 T ELT))
 (|latex| (((|String|) $) 11 T ELT)) (|inv| (($ $) 89 T ELT))
 (|hash| (((|SingleInteger|) $) 12 T ELT))
 (|gcdPolynomial| ((#13=(|SparseUnivariatePolynomial| $) #13# #13#) 59 T ELT))
 (|gcd| (#11# 63 T ELT) (#12# 62 T ELT)) (|factor| (#4# 93 T ELT))
 (|extendedEuclidean|
  (((|Record| #14=(|:| |coef1| $) #15=(|:| |coef2| $) (|:| |generator| $)) $ $)
   71 T ELT)
  (((|Union| (|Record| #14# #15#) #10#) $ $ $) 70 T ELT))
 (|exquo| (((|Union| $ "failed") $ $) 57 T ELT))
 (|expressIdealMember| (((|Maybe| #7#) #7# $) 66 T ELT))
 (|euclideanSize| (((|NonNegativeInteger|) $) 75 T ELT))
 (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) 74 T ELT))
 (|coerce| (((|OutputForm|) $) 13 T ELT) (($ (|Integer|)) 42 T ELT)
           (($ $) 58 T ELT) (($ #16=(|Fraction| #17=(|Integer|))) 85 T ELT))
 (|characteristic| (((|NonNegativeInteger|)) 41 T CONST))
 (|before?| (#1# 6 T ELT)) (|associates?| ((#3# $ $) 54 T ELT))
 (|annihilate?| (((|Boolean|) $ $) 34 T ELT)) (|Zero| (#5# 24 T CONST))
 (|One| (($) 46 T CONST)) (= (#1# 8 T ELT)) (/ (($ $ $) 84 T ELT))
 (- (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (+ (($ $ $) 18 T ELT))
 (** (($ $ (|PositiveInteger|)) 36 T ELT)
  (($ $ (|NonNegativeInteger|)) 44 T ELT) (($ $ #17#) 88 T ELT)
  (($ $ (|Fraction| #8#)) 109 T ELT))
 (* (($ (|PositiveInteger|) $) 17 T ELT)
    (($ (|NonNegativeInteger|) $) 21 T ELT)
    (($ (|Integer|) . #18=($)) 31 T ELT) (($ $ $) 35 T ELT)
    (($ $ #16#) 87 T ELT) (($ #16# . #18#) 86 T ELT)))
((|canonicalUnitNormal| . T) (|noZeroDivisors| . T) ((|commutative| "*") . T))
ACF
(((|Field|) . T) ((|RadicalCategory|) . T))
(((|AbelianGroup|) . T) ((|AbelianMonoid|) . T) ((|AbelianSemiGroup|) . T)
 ((|Algebra| #1=(|Fraction| (|Integer|))) . T) ((|Algebra| $) . T)
 ((|BasicType|) . T) ((|BiModule| #1# #1#) . T) ((|BiModule| $ $) . T)
 ((|CancellationAbelianMonoid|) . T) ((|CoercibleFrom| #1#) . T)
 ((|CoercibleFrom| $) . T) ((|CoercibleFrom| (|Integer|)) . T)
 ((|CoercibleTo| (|OutputForm|)) . T) ((|CommutativeRing|) . T)
 ((|DivisionRing|) . T) ((|EntireRing|) . T) ((|EuclideanDomain|) . T)
 ((|Field|) . T) ((|GcdDomain|) . T) ((|IntegralDomain|) . T)
 ((|LeftLinearSet| #1#) . T) ((|LeftLinearSet| $) . T)
 ((|LeftLinearSet| (|Integer|)) . T) ((|LeftModule| #1#) . T)
 ((|LeftModule| $) . T) ((|LinearSet| #1#) . T) ((|LinearSet| $) . T)
 ((|Module| #1#) . T) ((|Module| $) . T) ((|Monoid|) . T)
 ((|PrincipalIdealDomain|) . T) ((|RadicalCategory|) . T)
 ((|RightLinearSet| #1#) . T) ((|RightLinearSet| $) . T)
 ((|RightModule| #1#) . T) ((|RightModule| $) . T) ((|Ring|) . T) ((|Rng|) . T)
 ((|SemiGroup|) . T) ((|SemiRing|) . T) ((|SetCategory|) . T) ((|Type|) . T)
 ((|UniqueFactorizationDomain|) . T))
((|constructor| (NIL "Model for algebraically closed fields."))
 (|zerosOf|
  (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|))
   "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.")
  (((|List| $) (|SparseUnivariatePolynomial| $))
   "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.")
  (((|List| $) (|Polynomial| $))
   "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}."))
 (|zeroOf|
  (($ (|SparseUnivariatePolynomial| $) (|Symbol|))
   "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.")
  (($ (|SparseUnivariatePolynomial| $))
   "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.")
  (($ (|Polynomial| $))
   "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}."))
 (|rootsOf|
  (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|))
   "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.")
  (((|List| $) (|SparseUnivariatePolynomial| $))
   "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.")
  (((|List| $) (|Polynomial| $))
   "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}."))
 (|rootOf|
  (($ (|SparseUnivariatePolynomial| $) (|Symbol|))
   "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")
  (($ (|SparseUnivariatePolynomial| $))
   "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.")
  (($ (|Polynomial| $))
   "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
(("documentation" 0 7370) ("ancestors" 0 6277) ("parents" 0 6233)
 ("abbreviation" 0 6229) ("predicates" 0 NIL) ("attributes" 0 6150)
 ("signaturesAndLocals" 0 NIL) ("superDomain" 0 NIL) ("operationAlist" 0 3000)
 ("modemaps" 0 1079) ("sourceFile" 0 1064) ("constructorCategory" 0 142)
 ("dualSignature" 0 138) ("constructorModemap" 0 61) ("constructorKind" 0 50)
 ("constructorForm" 0 21))