Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Jupyter notebook 2015-12-31-143020.ipynb

40 views
Kernel: Anaconda 3
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_moons, make_circles, make_classification from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB h = .02 # step size in the mesh names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree", "Random Forest", "AdaBoost", "Naive Bayes"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear", C=0.025), SVC(gamma=2, C=1), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), AdaBoostClassifier(), GaussianNB()] X, y = make_classification(n_samples=1000, n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1) rng = np.random.RandomState(2) X += 2 * rng.uniform(size=X.shape) linearly_separable = (X, y) datasets = [make_moons(n_samples=1000, noise=0.3, random_state=0), make_circles(n_samples=1000, noise=0.2, factor=0.5, random_state=1), linearly_separable ] figure = plt.figure(figsize=(27, 9)) i = 1 # iterate over datasets for ds in datasets: # preprocess dataset, split into training and test part X, y = ds X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4) x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # just plot the dataset first cm = plt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = plt.subplot(len(datasets), len(classifiers) + 1, i) # Plot the training points ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) i += 1 # iterate over classifiers for name, clf in zip(names, classifiers): ax = plt.subplot(len(datasets), len(classifiers) + 1, i) clf.fit(X_train, y_train) score = clf.score(X_test, y_test) # Plot the decision boundary. For that, we will assign a color to each # point in the mesh [x_min, m_max]x[y_min, y_max]. if hasattr(clf, "decision_function"): Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] # Put the result into a color plot Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8) # Plot also the training points #ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright) # and testing points #ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,alpha=0.6) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(name) ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') i += 1 figure.subplots_adjust(left=.02, right=.98) plt.show()
--------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) <ipython-input-1-39431f9b499e> in <module>() 35 ] 36 ---> 37 figure = plt.figure(figsize=(27, 9)) 38 i = 1 39 # iterate over datasets /projects/anaconda3/lib/python3.5/site-packages/matplotlib/pyplot.py in figure(num, figsize, dpi, facecolor, edgecolor, frameon, FigureClass, **kwargs) 525 frameon=frameon, 526 FigureClass=FigureClass, --> 527 **kwargs) 528 529 if figLabel: /projects/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt4agg.py in new_figure_manager(num, *args, **kwargs) 44 FigureClass = kwargs.pop('FigureClass', Figure) 45 thisFig = FigureClass(*args, **kwargs) ---> 46 return new_figure_manager_given_figure(num, thisFig) 47 48 /projects/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt4agg.py in new_figure_manager_given_figure(num, figure) 51 Create a new figure manager instance for the given figure. 52 """ ---> 53 canvas = FigureCanvasQTAgg(figure) 54 return FigureManagerQT(canvas, num) 55 /projects/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt4agg.py in __init__(self, figure) 74 if DEBUG: 75 print('FigureCanvasQtAgg: ', figure) ---> 76 FigureCanvasQT.__init__(self, figure) 77 FigureCanvasQTAggBase.__init__(self, figure) 78 FigureCanvasAgg.__init__(self, figure) /projects/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt4.py in __init__(self, figure) 66 if DEBUG: 67 print('FigureCanvasQt qt4: ', figure) ---> 68 _create_qApp() 69 70 # Note different super-calling style to backend_qt5 /projects/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5.py in _create_qApp() 136 display = os.environ.get('DISPLAY') 137 if display is None or not re.search(':\d', display): --> 138 raise RuntimeError('Invalid DISPLAY variable') 139 140 qApp = QtWidgets.QApplication([six.text_type(" ")]) RuntimeError: Invalid DISPLAY variable