\begin{exercise}{E2}{Reduced row echelon form}{0007}
\begin{exerciseStatement}
\begin{enumerate}[(a)]
\item Show that \[\operatorname{RREF} \left[\begin{array}{ccc}
0 & -3 & 3 \\
-2 & 3 & -7 \\
1 & -5 & 7 \\
4 & -3 & 11 \\
-1 & -2 & 0
\end{array}\right] = \left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .\]
\item Explain why the matrix \(B= \left[\begin{array}{ccc}
1 & -4 & 0 \\
0 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \) is or is not in reduced row echelon form.
\end{enumerate}
\end{exerciseStatement}
\begin{exerciseAnswer}
\begin{enumerate}[(a)]
\item \(\operatorname{RREF} \left[\begin{array}{ccc}
0 & -3 & 3 \\
-2 & 3 & -7 \\
1 & -5 & 7 \\
4 & -3 & 11 \\
-1 & -2 & 0
\end{array}\right] = \left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .\)
\item \(B\) is not in reduced row echelon form because the pivots are not all \(1\).
\end{enumerate}
\end{exerciseAnswer}
\end{exercise}