Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23129 views
ubuntu2004
1
2
\begin{exercise}{E2}{Reduced row echelon form}{0007}
3
\begin{exerciseStatement}
4
5
\begin{enumerate}[(a)]
6
\item Show that \[\operatorname{RREF} \left[\begin{array}{ccc}
7
0 & -3 & 3 \\
8
-2 & 3 & -7 \\
9
1 & -5 & 7 \\
10
4 & -3 & 11 \\
11
-1 & -2 & 0
12
\end{array}\right] = \left[\begin{array}{ccc}
13
1 & 0 & 2 \\
14
0 & 1 & -1 \\
15
0 & 0 & 0 \\
16
0 & 0 & 0 \\
17
0 & 0 & 0
18
\end{array}\right] .\]
19
\item Explain why the matrix \(B= \left[\begin{array}{ccc}
20
1 & -4 & 0 \\
21
0 & 0 & -2 \\
22
0 & 0 & 0 \\
23
0 & 0 & 0 \\
24
0 & 0 & 0
25
\end{array}\right] \) is or is not in reduced row echelon form.
26
\end{enumerate}
27
28
\end{exerciseStatement}
29
\begin{exerciseAnswer}
30
31
\begin{enumerate}[(a)]
32
\item \(\operatorname{RREF} \left[\begin{array}{ccc}
33
0 & -3 & 3 \\
34
-2 & 3 & -7 \\
35
1 & -5 & 7 \\
36
4 & -3 & 11 \\
37
-1 & -2 & 0
38
\end{array}\right] = \left[\begin{array}{ccc}
39
1 & 0 & 2 \\
40
0 & 1 & -1 \\
41
0 & 0 & 0 \\
42
0 & 0 & 0 \\
43
0 & 0 & 0
44
\end{array}\right] .\)
45
\item \(B\) is not in reduced row echelon form because the pivots are not all \(1\).
46
\end{enumerate}
47
48
\end{exerciseAnswer}
49
\end{exercise}
50
51
52