<item ident="A1-0005" title="A1 | Linear maps | ver. 0005"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>A1.</strong> </p> <p>Consider the following maps of polynomials <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?S:\mathcal{P}\rightarrow\mathcal{P}" alt="S:\mathcal{P}\rightarrow\mathcal{P}" title="S:\mathcal{P}\rightarrow\mathcal{P}" data-latex="S:\mathcal{P}\rightarrow\mathcal{P}"/> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?T:\mathcal{P}\rightarrow\mathcal{P}" alt="T:\mathcal{P}\rightarrow\mathcal{P}" title="T:\mathcal{P}\rightarrow\mathcal{P}" data-latex="T:\mathcal{P}\rightarrow\mathcal{P}"/> defined by <p style="text-align:center;"><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?S(f(x))= 5 \, f\left(2\right) + 2 \, f'\left(-3\right) \hspace{1em} \text{and} \hspace{1em} T(f(x))= -2 \, f\left(x\right)^{2} - 4 \, f\left(x^{2}\right)" alt="S(f(x))= 5 \, f\left(2\right) + 2 \, f'\left(-3\right) \hspace{1em} \text{and} \hspace{1em} T(f(x))= -2 \, f\left(x\right)^{2} - 4 \, f\left(x^{2}\right)" title="S(f(x))= 5 \, f\left(2\right) + 2 \, f'\left(-3\right) \hspace{1em} \text{and} \hspace{1em} T(f(x))= -2 \, f\left(x\right)^{2} - 4 \, f\left(x^{2}\right)" data-latex="S(f(x))= 5 \, f\left(2\right) + 2 \, f'\left(-3\right) \hspace{1em} \text{and} \hspace{1em} T(f(x))= -2 \, f\left(x\right)^{2} - 4 \, f\left(x^{2}\right)"/></p> Explain why one these maps is a linear transformation and why the other map is not. </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>A1.</strong> </p> <p>Consider the following maps of polynomials <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?S:%5Cmathcal%7BP%7D%5Crightarrow%5Cmathcal%7BP%7D" alt="S:\mathcal{P}\rightarrow\mathcal{P}" title="S:\mathcal{P}\rightarrow\mathcal{P}" data-latex="S:\mathcal{P}\rightarrow\mathcal{P}"> and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?T:%5Cmathcal%7BP%7D%5Crightarrow%5Cmathcal%7BP%7D" alt="T:\mathcal{P}\rightarrow\mathcal{P}" title="T:\mathcal{P}\rightarrow\mathcal{P}" data-latex="T:\mathcal{P}\rightarrow\mathcal{P}"> defined by </p> <p style="text-align:center;"><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?S(f(x))=%205%20%5C,%20f%5Cleft(2%5Cright)%20+%202%20%5C,%20f'%5Cleft(-3%5Cright)%20%5Chspace%7B1em%7D%20%5Ctext%7Band%7D%20%5Chspace%7B1em%7D%20T(f(x))=%20-2%20%5C,%20f%5Cleft(x%5Cright)%5E%7B2%7D%20-%204%20%5C,%20f%5Cleft(x%5E%7B2%7D%5Cright)" alt="S(f(x))= 5 \, f\left(2\right) + 2 \, f'\left(-3\right) \hspace{1em} \text{and} \hspace{1em} T(f(x))= -2 \, f\left(x\right)^{2} - 4 \, f\left(x^{2}\right)" title="S(f(x))= 5 \, f\left(2\right) + 2 \, f'\left(-3\right) \hspace{1em} \text{and} \hspace{1em} T(f(x))= -2 \, f\left(x\right)^{2} - 4 \, f\left(x^{2}\right)" data-latex="S(f(x))= 5 \, f\left(2\right) + 2 \, f'\left(-3\right) \hspace{1em} \text{and} \hspace{1em} T(f(x))= -2 \, f\left(x\right)^{2} - 4 \, f\left(x^{2}\right)"></p> Explain why one these maps is a linear transformation and why the other map is not. </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?S" alt="S" title="S" data-latex="S"/> is linear and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?T" alt="T" title="T" data-latex="T"/> is not linear.</p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?S" alt="S" title="S" data-latex="S"> is linear and <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?T" alt="T" title="T" data-latex="T"> is not linear.</p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>