\begin{exercise}{A1}{Linear maps}{0006}
\begin{exerciseStatement}
Consider the following maps of polynomials \(S:\mathcal{P}\rightarrow\mathcal{P}\) and \(T:\mathcal{P}\rightarrow\mathcal{P}\) defined by \[
S(g(x))=
-5 \, x^{2} g\left(x\right) + 2 \, g'\left(x\right)
\hspace{1em} \text{and} \hspace{1em} T(g(x))=
2 \, g\left(x\right)^{2} + 3 \, g'\left(-1\right) \] Explain why one these maps is a linear transformation and why the other map is not.
\end{exerciseStatement}
\begin{exerciseAnswer}
\(S\) is linear and \(T\) is not linear.
\end{exerciseAnswer}
\end{exercise}