Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23129 views
ubuntu2004
1
2
\begin{exercise}{A1}{Linear maps}{0010}
3
\begin{exerciseStatement}
4
5
Consider the following maps of polynomials \(S:\mathcal{P}\rightarrow\mathcal{P}\) and \(T:\mathcal{P}\rightarrow\mathcal{P}\) defined by \[
6
S(h(x))=
7
-h\left(x\right)^{2} - 2 \, h'\left(x\right)
8
\hspace{1em} \text{and} \hspace{1em} T(h(x))=
9
3 \, h\left(4\right) + 4 \, h\left(x^{2}\right) \] Explain why one these maps is a linear transformation and why the other map is not.
10
11
\end{exerciseStatement}
12
\begin{exerciseAnswer}
13
14
\(S\) is not linear and \(T\) is linear.
15
16
\end{exerciseAnswer}
17
\end{exercise}
18
19
20