Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23129 views
ubuntu2004
1
<exercise checkit-seed="0008" checkit-slug="A3" checkit-title="Image and kernel">
2
<statement>
3
Let <m>T:\mathbb{R}^ 3 \to \mathbb{R}^ 4 </m> be the linear transformation given by
4
<me>T\left( \left[\begin{array}{c}
5
x_{1} \\
6
x_{2} \\
7
x_{3}
8
\end{array}\right] \right) = \left[\begin{array}{c}
9
-2 \, x_{1} + 4 \, x_{2} + 2 \, x_{3} \\
10
-x_{1} - 3 \, x_{2} - 4 \, x_{3} \\
11
-x_{1} + x_{2} \\
12
x_{1} + x_{3}
13
\end{array}\right] .</me><ol><li>Explain how to find the image of <m>T</m> and the kernel of <m>T</m>.</li><li>Explain how to find a basis of the image of <m>T</m> and a basis of the kernel of <m>T</m>.</li><li>Explain how to find the rank and nullity of <m>T</m>, and why the rank-nullity theorem holds for <m>T</m>.</li></ol></statement>
14
<answer>
15
<p>
16
<me>\operatorname{RREF} \left[\begin{array}{ccc}
17
-2 &amp; 4 &amp; 2 \\
18
-1 &amp; -3 &amp; -4 \\
19
-1 &amp; 1 &amp; 0 \\
20
1 &amp; 0 &amp; 1
21
\end{array}\right] = \left[\begin{array}{ccc}
22
1 &amp; 0 &amp; 1 \\
23
0 &amp; 1 &amp; 1 \\
24
0 &amp; 0 &amp; 0 \\
25
0 &amp; 0 &amp; 0
26
\end{array}\right] </me>
27
</p>
28
<ol>
29
<li>
30
<me>\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c}
31
-2 \\
32
-1 \\
33
-1 \\
34
1
35
\end{array}\right] , \left[\begin{array}{c}
36
4 \\
37
-3 \\
38
1 \\
39
0
40
\end{array}\right] \right\} </me>
41
<me>\operatorname{ker}\ T = \left\{ \left[\begin{array}{c}
42
-a \\
43
-a \\
44
a
45
\end{array}\right] \middle|\,a\in\mathbb{R}\right\} </me>
46
</li>
47
<li>
48
A basis of <m>\operatorname{Im}\ T</m> is <m> \left\{ \left[\begin{array}{c}
49
-2 \\
50
-1 \\
51
-1 \\
52
1
53
\end{array}\right] , \left[\begin{array}{c}
54
4 \\
55
-3 \\
56
1 \\
57
0
58
\end{array}\right] \right\} </m>.
59
A basis of <m>\operatorname{ker}\ T</m> is <m> \left\{ \left[\begin{array}{c}
60
-1 \\
61
-1 \\
62
1
63
\end{array}\right] \right\} </m></li>
64
<li>
65
The rank of <m>T</m> is <m> 2 </m>, the nullity of <m>T</m> is <m> 1 </m>,
66
and the dimension of the domain of <m>T</m> is <m> 3 </m>. The rank-nullity theorem asserts that
67
<m> 2 + 1 = 3 </m>, which we see to be true.
68
</li>
69
</ol>
70
</answer>
71
</exercise>
72
73
74