Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23129 views
ubuntu2004
1
2
\begin{exercise}{A3}{Image and kernel}{0009}
3
\begin{exerciseStatement} Let \(T:\mathbb{R}^ 3 \to \mathbb{R}^ 4 \) be the linear transformation given by \[T\left( \left[\begin{array}{c}
4
x \\
5
y \\
6
z
7
\end{array}\right] \right) = \left[\begin{array}{c}
8
4 \, x + 5 \, y - 3 \, z \\
9
4 \, x + y - 7 \, z \\
10
5 \, x + 3 \, y - 7 \, z \\
11
3 \, x + 5 \, y - z
12
\end{array}\right] .\]
13
14
\begin{enumerate}[(a)]
15
\item Explain how to find the image of \(T\) and the kernel of \(T\).
16
\item Explain how to find a basis of the image of \(T\) and a basis of the kernel of \(T\).
17
\item Explain how to find the rank and nullity of \(T\), and why the rank-nullity theorem holds for \(T\).
18
\end{enumerate}
19
20
\end{exerciseStatement}
21
\begin{exerciseAnswer}
22
23
\[\operatorname{RREF} \left[\begin{array}{ccc}
24
4 & 5 & -3 \\
25
4 & 1 & -7 \\
26
5 & 3 & -7 \\
27
3 & 5 & -1
28
\end{array}\right] = \left[\begin{array}{ccc}
29
1 & 0 & -2 \\
30
0 & 1 & 1 \\
31
0 & 0 & 0 \\
32
0 & 0 & 0
33
\end{array}\right] \]
34
35
36
37
\begin{enumerate}[(a)]
38
\item \[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c}
39
4 \\
40
4 \\
41
5 \\
42
3
43
\end{array}\right] , \left[\begin{array}{c}
44
5 \\
45
1 \\
46
3 \\
47
5
48
\end{array}\right] \right\} \]\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c}
49
2 \, a \\
50
-a \\
51
a
52
\end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]
53
\item A basis of \(\operatorname{Im}\ T\) is \( \left\{ \left[\begin{array}{c}
54
4 \\
55
4 \\
56
5 \\
57
3
58
\end{array}\right] , \left[\begin{array}{c}
59
5 \\
60
1 \\
61
3 \\
62
5
63
\end{array}\right] \right\} \). A basis of \(\operatorname{ker}\ T\) is \( \left\{ \left[\begin{array}{c}
64
2 \\
65
-1 \\
66
1
67
\end{array}\right] \right\} \)
68
\item The rank of \(T\) is \( 2 \), the nullity of \(T\) is \( 1 \), and the dimension of the domain of \(T\) is \( 3 \). The rank-nullity theorem asserts that \( 2 + 1 = 3 \), which we see to be true.
69
\end{enumerate}
70
71
\end{exerciseAnswer}
72
\end{exercise}
73
74
75