Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23129 views
ubuntu2004
1
2
\begin{exercise}{A3}{Image and kernel}{0010}
3
\begin{exerciseStatement} Let \(T:\mathbb{R}^ 3 \to \mathbb{R}^ 4 \) be the linear transformation given by \[T\left( \left[\begin{array}{c}
4
x_{1} \\
5
x_{2} \\
6
x_{3}
7
\end{array}\right] \right) = \left[\begin{array}{c}
8
5 \, x_{1} + 4 \, x_{2} - 8 \, x_{3} \\
9
-2 \, x_{1} - 3 \, x_{2} + 6 \, x_{3} \\
10
2 \, x_{1} + x_{2} - 2 \, x_{3} \\
11
-3 \, x_{1} - 4 \, x_{2} + 8 \, x_{3}
12
\end{array}\right] .\]
13
14
\begin{enumerate}[(a)]
15
\item Explain how to find the image of \(T\) and the kernel of \(T\).
16
\item Explain how to find a basis of the image of \(T\) and a basis of the kernel of \(T\).
17
\item Explain how to find the rank and nullity of \(T\), and why the rank-nullity theorem holds for \(T\).
18
\end{enumerate}
19
20
\end{exerciseStatement}
21
\begin{exerciseAnswer}
22
23
\[\operatorname{RREF} \left[\begin{array}{ccc}
24
5 & 4 & -8 \\
25
-2 & -3 & 6 \\
26
2 & 1 & -2 \\
27
-3 & -4 & 8
28
\end{array}\right] = \left[\begin{array}{ccc}
29
1 & 0 & 0 \\
30
0 & 1 & -2 \\
31
0 & 0 & 0 \\
32
0 & 0 & 0
33
\end{array}\right] \]
34
35
36
37
\begin{enumerate}[(a)]
38
\item \[\operatorname{Im}\ T = \operatorname{span}\ \left\{ \left[\begin{array}{c}
39
5 \\
40
-2 \\
41
2 \\
42
-3
43
\end{array}\right] , \left[\begin{array}{c}
44
4 \\
45
-3 \\
46
1 \\
47
-4
48
\end{array}\right] \right\} \]\[\operatorname{ker}\ T = \left\{ \left[\begin{array}{c}
49
0 \\
50
2 \, a \\
51
a
52
\end{array}\right] \middle|\,a\in\mathbb{R}\right\} \]
53
\item A basis of \(\operatorname{Im}\ T\) is \( \left\{ \left[\begin{array}{c}
54
5 \\
55
-2 \\
56
2 \\
57
-3
58
\end{array}\right] , \left[\begin{array}{c}
59
4 \\
60
-3 \\
61
1 \\
62
-4
63
\end{array}\right] \right\} \). A basis of \(\operatorname{ker}\ T\) is \( \left\{ \left[\begin{array}{c}
64
0 \\
65
2 \\
66
1
67
\end{array}\right] \right\} \)
68
\item The rank of \(T\) is \( 2 \), the nullity of \(T\) is \( 1 \), and the dimension of the domain of \(T\) is \( 3 \). The rank-nullity theorem asserts that \( 2 + 1 = 3 \), which we see to be true.
69
\end{enumerate}
70
71
\end{exerciseAnswer}
72
\end{exercise}
73
74
75