Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{A4}{Injectivity and surjectivity}{0001}
3
\begin{exerciseStatement} Let \(T:\mathbb{R}^ 4 \to \mathbb{R}^ 3 \) be the linear transformation given by the standard matrix \( \left[\begin{array}{cccc}
4
2 & 8 & -4 & -4 \\
5
2 & 8 & -1 & -4 \\
6
1 & 4 & -3 & -2
7
\end{array}\right] .\)
8
9
\begin{enumerate}[(a)]
10
\item Explain why \(T\) is or is not injective.
11
\item Explain why \(T\) is or is not surjective.
12
\end{enumerate}
13
14
\end{exerciseStatement}
15
\begin{exerciseAnswer}
16
17
\[\operatorname{RREF} \left[\begin{array}{cccc}
18
2 & 8 & -4 & -4 \\
19
2 & 8 & -1 & -4 \\
20
1 & 4 & -3 & -2
21
\end{array}\right] = \left[\begin{array}{cccc}
22
1 & 4 & 0 & -2 \\
23
0 & 0 & 1 & 0 \\
24
0 & 0 & 0 & 0
25
\end{array}\right] \]
26
27
28
29
\begin{enumerate}[(a)]
30
\item \(T\) is not injective
31
\item \(T\) is not surjective
32
\end{enumerate}
33
34
\end{exerciseAnswer}
35
\end{exercise}
36
37
38