Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{A4}{Injectivity and surjectivity}{0004}
3
\begin{exerciseStatement} Let \(T:\mathbb{R}^ 4 \to \mathbb{R}^ 4 \) be the linear transformation given by the standard matrix \( \left[\begin{array}{cccc}
4
1 & -2 & -1 & -8 \\
5
1 & -1 & 0 & -5 \\
6
0 & 1 & 2 & 6 \\
7
-1 & 3 & 0 & 6
8
\end{array}\right] .\)
9
10
\begin{enumerate}[(a)]
11
\item Explain why \(T\) is or is not injective.
12
\item Explain why \(T\) is or is not surjective.
13
\end{enumerate}
14
15
\end{exerciseStatement}
16
\begin{exerciseAnswer}
17
18
\[\operatorname{RREF} \left[\begin{array}{cccc}
19
1 & -2 & -1 & -8 \\
20
1 & -1 & 0 & -5 \\
21
0 & 1 & 2 & 6 \\
22
-1 & 3 & 0 & 6
23
\end{array}\right] = \left[\begin{array}{cccc}
24
1 & 0 & 0 & 0 \\
25
0 & 1 & 0 & 0 \\
26
0 & 0 & 1 & 0 \\
27
0 & 0 & 0 & 1
28
\end{array}\right] \]
29
30
31
32
\begin{enumerate}[(a)]
33
\item \(T\) is injective.
34
\item \(T\) is surjective.
35
\end{enumerate}
36
37
\end{exerciseAnswer}
38
\end{exercise}
39
40
41