<exercise checkit-seed="0008" checkit-slug="A4" checkit-title="Injectivity and surjectivity">
<statement>
Let <m>T:\mathbb{R}^ 4 \to \mathbb{R}^ 3 </m> be the linear transformation given by the standard matrix
<m> \left[\begin{array}{cccc}
0 & -4 & 0 & -4 \\
-1 & 5 & 3 & 6 \\
1 & 0 & -3 & -1
\end{array}\right] .</m><ol><li>Explain why <m>T</m> is or is not injective.</li><li>Explain why <m>T</m> is or is not surjective.</li></ol></statement>
<answer>
<p>
<me>\operatorname{RREF} \left[\begin{array}{cccc}
0 & -4 & 0 & -4 \\
-1 & 5 & 3 & 6 \\
1 & 0 & -3 & -1
\end{array}\right] = \left[\begin{array}{cccc}
1 & 0 & -3 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] </me>
</p>
<ol>
<li><m>T</m> is not injective</li>
<li><m>T</m> is not surjective</li>
</ol>
</answer>
</exercise>