Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23129 views
ubuntu2004
1
2
\begin{exercise}{E2}{Reduced row echelon form}{0001}
3
\begin{exerciseStatement}
4
5
\begin{enumerate}[(a)]
6
\item Show that \[\operatorname{RREF} \left[\begin{array}{cccc}
7
0 & 0 & 1 & -2 \\
8
1 & -3 & 5 & -12 \\
9
0 & 0 & -4 & 8 \\
10
1 & -3 & 3 & -8
11
\end{array}\right] = \left[\begin{array}{cccc}
12
1 & -3 & 0 & -2 \\
13
0 & 0 & 1 & -2 \\
14
0 & 0 & 0 & 0 \\
15
0 & 0 & 0 & 0
16
\end{array}\right] .\]
17
\item Explain why the matrix \(B= \left[\begin{array}{cccc}
18
1 & 0 & -1 & -3 \\
19
-7 & 1 & 5 & 20 \\
20
0 & 0 & 0 & 0 \\
21
0 & 0 & 0 & 0
22
\end{array}\right] \) is or is not in reduced row echelon form.
23
\end{enumerate}
24
25
\end{exerciseStatement}
26
\begin{exerciseAnswer}
27
28
\begin{enumerate}[(a)]
29
\item \(\operatorname{RREF} \left[\begin{array}{cccc}
30
0 & 0 & 1 & -2 \\
31
1 & -3 & 5 & -12 \\
32
0 & 0 & -4 & 8 \\
33
1 & -3 & 3 & -8
34
\end{array}\right] = \left[\begin{array}{cccc}
35
1 & -3 & 0 & -2 \\
36
0 & 0 & 1 & -2 \\
37
0 & 0 & 0 & 0 \\
38
0 & 0 & 0 & 0
39
\end{array}\right] .\)
40
\item \(B\) is not in reduced row echelon form because not every entry above and below each pivot is zero.
41
\end{enumerate}
42
43
\end{exerciseAnswer}
44
\end{exercise}
45
46
47