Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
<exercise checkit-seed="0000" checkit-slug="G4" checkit-title="Eigenvectors">
2
<statement>
3
<p>Explain how to find a basis for the eigenspace associated to the eigenvalue <m> -1 </m> in the matrix <me> \left[\begin{array}{cccc}
4
-2 &amp; -1 &amp; 0 &amp; 1 \\
5
-2 &amp; -4 &amp; 4 &amp; 6 \\
6
-2 &amp; -2 &amp; 0 &amp; 3 \\
7
-1 &amp; -2 &amp; 3 &amp; 3
8
\end{array}\right] </me></p>
9
</statement>
10
<answer>
11
<p>
12
<me>\operatorname{RREF} \left[\begin{array}{cccc}
13
-1 &amp; -1 &amp; 0 &amp; 1 \\
14
-2 &amp; -3 &amp; 4 &amp; 6 \\
15
-2 &amp; -2 &amp; 1 &amp; 3 \\
16
-1 &amp; -2 &amp; 3 &amp; 4
17
\end{array}\right] = \left[\begin{array}{cccc}
18
1 &amp; 0 &amp; 0 &amp; -1 \\
19
0 &amp; 1 &amp; 0 &amp; 0 \\
20
0 &amp; 0 &amp; 1 &amp; 1 \\
21
0 &amp; 0 &amp; 0 &amp; 0
22
\end{array}\right] </me>
23
</p>
24
<p>A basis of the eigenspace is <m> \left\{ \left[\begin{array}{c}
25
1 \\
26
0 \\
27
-1 \\
28
1
29
\end{array}\right] \right\} </m>.</p>
30
</answer>
31
</exercise>
32
33
34