Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{G4}{Eigenvectors}{0001}
3
\begin{exerciseStatement}
4
5
Explain how to find a basis for the eigenspace associated to the eigenvalue \( 2 \) in the matrix \[ \left[\begin{array}{cccc}
6
4 & 8 & 1 & -4 \\
7
2 & 10 & -1 & -4 \\
8
1 & 4 & -1 & -2 \\
9
-1 & -4 & -2 & 4
10
\end{array}\right] \]
11
12
\end{exerciseStatement}
13
\begin{exerciseAnswer}
14
15
\[\operatorname{RREF} \left[\begin{array}{cccc}
16
2 & 8 & 1 & -4 \\
17
2 & 8 & -1 & -4 \\
18
1 & 4 & -3 & -2 \\
19
-1 & -4 & -2 & 2
20
\end{array}\right] = \left[\begin{array}{cccc}
21
1 & 4 & 0 & -2 \\
22
0 & 0 & 1 & 0 \\
23
0 & 0 & 0 & 0 \\
24
0 & 0 & 0 & 0
25
\end{array}\right] \]
26
27
28
29
A basis of the eigenspace is \( \left\{ \left[\begin{array}{c}
30
-4 \\
31
1 \\
32
0 \\
33
0
34
\end{array}\right] , \left[\begin{array}{c}
35
2 \\
36
0 \\
37
0 \\
38
1
39
\end{array}\right] \right\} \).
40
41
\end{exerciseAnswer}
42
\end{exercise}
43
44
45