\begin{exercise}{M2}{Row operations as matrix multiplication}{0006}
\begin{exerciseStatement}
Let \(A\) be a \(4 \times 4\) matrix.
\begin{enumerate}[(a)]
\item Give a \(4 \times 4\) matrix \(Q\) that may be used to perform the row operation \( R_1 \to R_1 + 2R_2 \).
\item Give a \(4 \times 4\) matrix \(C\) that may be used to perform the row operation \( R_4 \to 4R_4 \).
\item Use matrix multiplication to describe the matrix obtained by applying \( R_1 \to R_1 + 2R_2 \) and then \( R_4 \to 4R_4 \) to \(A\) (note the order).
\end{enumerate}
\end{exerciseStatement}
\begin{exerciseAnswer}
\begin{enumerate}[(a)]
\item \(Q= \left[\begin{array}{cccc}
1 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \)
\item \(C= \left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \)
\item \(CQA\)
\end{enumerate}
\end{exerciseAnswer}
\end{exercise}