Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{M2}{Row operations as matrix multiplication}{0007}
3
\begin{exerciseStatement}
4
5
Let \(A\) be a \(4 \times 4\) matrix.
6
7
8
9
\begin{enumerate}[(a)]
10
\item Give a \(4 \times 4\) matrix \(C\) that may be used to perform the row operation \( R_4 \to R_4 + 5R_1 \).
11
\item Give a \(4 \times 4\) matrix \(P\) that may be used to perform the row operation \( R_1 \leftrightarrow R_3 \).
12
\item Use matrix multiplication to describe the matrix obtained by applying \( R_1 \leftrightarrow R_3 \) and then \( R_4 \to R_4 + 5R_1 \) to \(A\) (note the order).
13
\end{enumerate}
14
15
\end{exerciseStatement}
16
\begin{exerciseAnswer}
17
18
\begin{enumerate}[(a)]
19
\item \(C= \left[\begin{array}{cccc}
20
1 & 0 & 0 & 0 \\
21
0 & 1 & 0 & 0 \\
22
0 & 0 & 1 & 0 \\
23
5 & 0 & 0 & 1
24
\end{array}\right] \)
25
\item \(P= \left[\begin{array}{cccc}
26
0 & 0 & 1 & 0 \\
27
0 & 1 & 0 & 0 \\
28
1 & 0 & 0 & 0 \\
29
0 & 0 & 0 & 1
30
\end{array}\right] \)
31
\item \(CPA\)
32
\end{enumerate}
33
34
\end{exerciseAnswer}
35
\end{exercise}
36
37
38