\begin{exercise}{M2}{Row operations as matrix multiplication}{0009}
\begin{exerciseStatement}
Let \(A\) be a \(4 \times 4\) matrix.
\begin{enumerate}[(a)]
\item Give a \(4 \times 4\) matrix \(N\) that may be used to perform the row operation \( R_2 \to R_2 + 4R_3 \).
\item Give a \(4 \times 4\) matrix \(P\) that may be used to perform the row operation \( R_3 \to 4R_3 \).
\item Use matrix multiplication to describe the matrix obtained by applying \( R_3 \to 4R_3 \) and then \( R_2 \to R_2 + 4R_3 \) to \(A\) (note the order).
\end{enumerate}
\end{exerciseStatement}
\begin{exerciseAnswer}
\begin{enumerate}[(a)]
\item \(N= \left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \)
\item \(P= \left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \)
\item \(NPA\)
\end{enumerate}
\end{exerciseAnswer}
\end{exercise}