Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
2
\begin{exercise}{V1}{Vector spaces}{0007}
3
\begin{exerciseStatement}
4
5
Let \(V\) be the set of all pairs \((x,y)\) of real numbers together with the following operations:
6
7
\[(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2} + 4,\,\sqrt{y_{1}^{2} + y_{2}^{2}}\right) \]\[c \odot (x,y) = \left(c x,\,c y\right) .\]
8
9
(a) Show that vector addition is associative, that is:
10
11
\[\left((x_1,y_1)\oplus(x_2,y_2)\right)\oplus(x_3,y_3)=(x_1,y_1)\oplus\left((x_2,y_2)\oplus(x_3,y_3)\right).
12
\]
13
14
(b) Explain why \(V\) nonetheless is not a vector space.
15
16
\end{exerciseStatement}
17
\begin{exerciseAnswer}
18
19
\(V\) is not a vector space, which may be shown by demonstrating that any one of the following properties do not hold:
20
21
22
23
\begin{itemize}
24
\item there is no additive identity element
25
\item scalar multiplication does not distribute over vector addition
26
\item scalar multiplication does not distribute over scalar addition
27
\end{itemize}
28
29
\end{exerciseAnswer}
30
\end{exercise}
31
32
33