Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
23127 views
ubuntu2004
1
<exercise checkit-seed="0009" checkit-slug="V1" checkit-title="Vector spaces">
2
<statement>
3
<p>
4
Let <m>V</m> be the set of all pairs <m>(x,y)</m> of real numbers
5
together with the following operations:
6
</p>
7
<me>(x_1,y_1)\oplus (x_2,y_2)= \left(4 \, x_{1} + 4 \, x_{2},\,4 \, y_{1} + 4 \, y_{2}\right) </me>
8
<me>c \odot (x,y) = \left(c x,\,c y\right) .</me>
9
<p>
10
(a) Show that scalar multiplication distributes over vector addition, that is:
11
</p>
12
<me>c\odot \left((x_1,y_1)\oplus(x_2,y_2)\right)=c\odot(x_1,y_1)\oplus c\odot(x_2,y_2).
13
</me>
14
<p>
15
(b) Explain why <m>V</m> nonetheless is not a vector space.
16
</p>
17
</statement>
18
<answer>
19
<p><m>V</m> is not a vector space, which may be shown by demonstrating that
20
any one of the following properties do not hold:
21
</p>
22
<ul>
23
<li>vector addition is not associative</li>
24
<li>scalar multiplication does not distribute over scalar addition</li>
25
</ul>
26
</answer>
27
</exercise>
28
29
30