<item ident="V1-0011" title="V1 | Vector spaces | ver. 0011"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>V1.</strong> </p> <p> Let <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"/> be the set of all pairs <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x,y)" alt="(x,y)" title="(x,y)" data-latex="(x,y)"/> of real numbers together with the following operations: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" alt="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" title="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" data-latex="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?c \odot (x,y) = \left(c x,\,c y - 3 \, c + 3\right) ." alt="c \odot (x,y) = \left(c x,\,c y - 3 \, c + 3\right) ." title="c \odot (x,y) = \left(c x,\,c y - 3 \, c + 3\right) ." data-latex="c \odot (x,y) = \left(c x,\,c y - 3 \, c + 3\right) ."/> </p> <p> (a) Show that scalar multiplication is associative, that is: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?a\odot(b\odot (x,y))=(ab)\odot(x,y)." alt="a\odot(b\odot (x,y))=(ab)\odot(x,y)." title="a\odot(b\odot (x,y))=(ab)\odot(x,y)." data-latex="a\odot(b\odot (x,y))=(ab)\odot(x,y)."/> </p> <p> (b) Explain why <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"/> nonetheless is not a vector space. </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>V1.</strong> </p> <p> Let <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"> be the set of all pairs <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x,y)" alt="(x,y)" title="(x,y)" data-latex="(x,y)"> of real numbers together with the following operations: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(x_1,y_1)%5Coplus%20(x_2,y_2)=%20%5Cleft(x_%7B1%7D%20+%20x_%7B2%7D,%5C,y_%7B1%7D%20+%20y_%7B2%7D%5Cright)" alt="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" title="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)" data-latex="(x_1,y_1)\oplus (x_2,y_2)= \left(x_{1} + x_{2},\,y_{1} + y_{2}\right)"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?c%20%5Codot%20(x,y)%20=%20%5Cleft(c%20x,%5C,c%20y%20-%203%20%5C,%20c%20+%203%5Cright)%20." alt="c \odot (x,y) = \left(c x,\,c y - 3 \, c + 3\right) ." title="c \odot (x,y) = \left(c x,\,c y - 3 \, c + 3\right) ." data-latex="c \odot (x,y) = \left(c x,\,c y - 3 \, c + 3\right) ."> </p> <p> (a) Show that scalar multiplication is associative, that is: </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?a%5Codot(b%5Codot%20(x,y))=(ab)%5Codot(x,y)." alt="a\odot(b\odot (x,y))=(ab)\odot(x,y)." title="a\odot(b\odot (x,y))=(ab)\odot(x,y)." data-latex="a\odot(b\odot (x,y))=(ab)\odot(x,y)."> </p> <p> (b) Explain why <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"> nonetheless is not a vector space. </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"/> is not a vector space, which may be shown by demonstrating that any one of the following properties do not hold: </p> <ul> <li>scalar multiplication does not distribute over vector addition</li> <li>scalar multiplication does not distribute over scalar addition</li> </ul> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p><img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?V" alt="V" title="V" data-latex="V"> is not a vector space, which may be shown by demonstrating that any one of the following properties do not hold: </p> <ul> <li>scalar multiplication does not distribute over vector addition</li> <li>scalar multiplication does not distribute over scalar addition</li> </ul> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>