<exercise checkit-seed="0000" checkit-slug="V2" checkit-title="Linear combinations">
<statement>
<p>Consider the following statement.</p>
<ul>
<li>
The vector <m> \left[\begin{array}{c}
-2 \\
-6 \\
-6 \\
-4
\end{array}\right] </m>is
a linear combination of the vectors <m> \left[\begin{array}{c}
3 \\
2 \\
-5 \\
-3
\end{array}\right] , \left[\begin{array}{c}
0 \\
1 \\
-3 \\
1
\end{array}\right] , \text{ and } \left[\begin{array}{c}
4 \\
-3 \\
-3 \\
0
\end{array}\right] </m>.
</li>
</ul>
<ol>
<li> Write an equivalent statement using a vector equation.</li>
<li> Explain why your statement is true or false.</li>
</ol>
</statement>
<answer>
<me>\operatorname{RREF} \left[\begin{array}{ccc|c}
3 & 0 & 4 & -2 \\
2 & 1 & -3 & -6 \\
-5 & -3 & -3 & -6 \\
-3 & 1 & 0 & -4
\end{array}\right] = \left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] </me>
<ol>
<li>
The vector equation <m> x_{1} \left[\begin{array}{c}
3 \\
2 \\
-5 \\
-3
\end{array}\right] + x_{2} \left[\begin{array}{c}
0 \\
1 \\
-3 \\
1
\end{array}\right] + x_{3} \left[\begin{array}{c}
4 \\
-3 \\
-3 \\
0
\end{array}\right] = \left[\begin{array}{c}
-2 \\
-6 \\
-6 \\
-4
\end{array}\right] </m>has a solution.</li>
<li>
<p><m> \left[\begin{array}{c}
-2 \\
-6 \\
-6 \\
-4
\end{array}\right] </m> is not
a linear combination of the vectors <m> \left[\begin{array}{c}
3 \\
2 \\
-5 \\
-3
\end{array}\right] , \left[\begin{array}{c}
0 \\
1 \\
-3 \\
1
\end{array}\right] , \text{ and } \left[\begin{array}{c}
4 \\
-3 \\
-3 \\
0
\end{array}\right] </m>.
</p>
</li>
</ol>
</answer>
</exercise>