Project: Okounkov-Olshanski-FPSAC2020
Views: 126Visibility: Unlisted (only visible to those who know the link)
Image: defaultSupplementary Sage worksheet for the article On the Okounkov-Olshanski formula for standard tableaux of skew shapes, arxiv:2007.05006 Alejandro H. Morales, Daniel G. Zhu
The Okounkov-Olshanski formula states that the number of SYT of skew shape equals
where .
Let's look at an example.
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1234, in execute
flags=compile_flags), namespace, locals)
File "", line 1, in <module>
NameError: name 'OOF' is not defined
It is not so hard to show that this formula is nonnegative. However some terms have zero contribution.
tableaux [[1, 1], [2]] conbribution 0
tableaux [[1, 1], [3]] conbribution 0
tableaux [[1, 1], [4]] conbribution 0
tableaux [[1, 2], [2]] conbribution 3
tableaux [[1, 2], [3]] conbribution 4
tableaux [[1, 3], [2]] conbribution 6
tableaux [[1, 2], [4]] conbribution 5
tableaux [[1, 4], [2]] conbribution 9
tableaux [[1, 3], [3]] conbribution 8
tableaux [[1, 3], [4]] conbribution 10
tableaux [[1, 4], [3]] conbribution 12
tableaux [[1, 4], [4]] conbribution 15
tableaux [[2, 2], [3]] conbribution 8
tableaux [[2, 2], [4]] conbribution 10
tableaux [[2, 3], [3]] conbribution 16
tableaux [[2, 3], [4]] conbribution 20
tableaux [[2, 4], [3]] conbribution 24
tableaux [[2, 4], [4]] conbribution 30
tableaux [[3, 3], [4]] conbribution 30
tableaux [[3, 4], [4]] conbribution 45
Number of terms
Our first main result, Theorem 1.2, has two determinant formulas for the number of nonzero terms of the Okounkov-Olshanski formula that we denote by
Let's do some examples
[ 1 1 1 1]
[ 1 2 4 5]
[ 0 1 6 10]
[ 0 0 1 4]
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1234, in execute
flags=compile_flags), namespace, locals)
File "", line 1, in <module>
NameError: name 'OOT2' is not defined
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1234, in execute
flags=compile_flags), namespace, locals)
File "", line 1, in <module>
NameError: name 'OOT1' is not defined
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1234, in execute
flags=compile_flags), namespace, locals)
File "", line 1, in <module>
NameError: name 'OOT2' is not defined
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1234, in execute
flags=compile_flags), namespace, locals)
File "", line 1, in <module>
NameError: name 'OOT1' is not defined
[6 1]
[1 3]
Our second main result is a formula for the number of terms for thick zigzags as a determinant of normalized Genocchi numbers , In particular
Interestingly this number of terms is proportional to the number of SYT of this shape.
size shape 45
shape [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] / [4, 3, 2, 1]
Reformulations
We give several reformulations of the Okounkov-Olshanski formula. One is in terms of reverse excited diagrams. Excited diagrams appear in the Naruse hook length formula for skew shapes. The reverse excited diagram reformulation is
,
where , are certain cells of (viewed as a shifted skew shape) associated to and equals the arm-length of the cell .
+---+---+---+---+---+
||||||||||\|||||||X||
+---+---+---+---+---+
| ||||||||||\|||X||
+---+---+---+---+---+
| | ||||||X|||X||
+---+---+---+---+---+
| | | ||X|| |
+---+---+---+---+---+ arms: [2, 3]
+---+---+---+---+---+
||||||||||\|||||||X||
+---+---+---+---+---+
| ||||||X|||||||X||
+---+---+---+---+---+
| | ||||||\|||X||
+---+---+---+---+---+
| | | ||X|| |
+---+---+---+---+---+ arms: [2, 3]
+---+---+---+---+---+
||||||X|||||||||||X||
+---+---+---+---+---+
| ||||||\|||||||X||
+---+---+---+---+---+
| | ||||||\|||X||
+---+---+---+---+---+
| | | ||X|| |
+---+---+---+---+---+ arms: [3, 2]
+---+---+---+---+---+
||||||||||\|||||||X||
+---+---+---+---+---+
| ||||||X|||||||X||
+---+---+---+---+---+
| | ||X|||||||X||
+---+---+---+---+---+
| | | ||\|| |
+---+---+---+---+---+ arms: [3, 1]
+---+---+---+---+---+
||||||X|||||||||||X||
+---+---+---+---+---+
| ||||||\|||||||X||
+---+---+---+---+---+
| | ||X|||||||X||
+---+---+---+---+---+
| | | ||\|| |
+---+---+---+---+---+ arms: [3, 1]
+---+---+---+---+---+
||||||X|||||||||||X||
+---+---+---+---+---+
| ||X|||||||||||X||
+---+---+---+---+---+
| | ||\|||||||X||
+---+---+---+---+---+
| | | ||\|| |
+---+---+---+---+---+ arms: [1, 3]
Another reformulation is in terms of Knutson-Tao puzzles: .
({(1, 1): 1/1\1,
(1, 2): 0/\1 1\/0,
(1, 3): 1/\1 1\/1,
(1, 4): 0/\1 1\/0,
(1, 5): 0/\0 1\/10,
(1, 6): 0/\0 0\/0,
(2, 2): 0/0\0,
(2, 3): 1/\0 0\/1,
(2, 4): 0/\0 0\/0,
(2, 5): 10/\1 0\/0,
(2, 6): 0/\0 1\/10,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 0/\0 0\/0,
(3, 6): 10/\1 0\/0,
(4, 4): 10/0\1,
(4, 5): 0/\0 1\/10,
(4, 6): 0/\0 0\/0,
(5, 5): 10/0\1,
(5, 6): 0/\0 1\/10,
(6, 6): 10/0\1}, 3)
({(1, 1): 1/1\1,
(1, 2): 0/\1 1\/0,
(1, 3): 1/\1 1\/1,
(1, 4): 0/\0 1\/10,
(1, 5): 0/\0 0\/0,
(1, 6): 0/\0 0\/0,
(2, 2): 0/0\0,
(2, 3): 1/\0 0\/1,
(2, 4): 10/\1 0\/0,
(2, 5): 0/\1 1\/0,
(2, 6): 0/\0 1\/10,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 0/\0 0\/0,
(3, 6): 10/\1 0\/0,
(4, 4): 10/0\1,
(4, 5): 0/\0 1\/10,
(4, 6): 0/\0 0\/0,
(5, 5): 10/0\1,
(5, 6): 0/\0 1\/10,
(6, 6): 10/0\1}, 3)
({(1, 1): 1/1\1,
(1, 2): 0/\1 1\/0,
(1, 3): 1/\1 1\/1,
(1, 4): 0/\0 1\/10,
(1, 5): 0/\0 0\/0,
(1, 6): 0/\0 0\/0,
(2, 2): 0/0\0,
(2, 3): 1/\0 0\/1,
(2, 4): 10/\1 0\/0,
(2, 5): 0/\0 1\/10,
(2, 6): 0/\0 0\/0,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 10/\1 0\/0,
(3, 6): 0/\1 1\/0,
(4, 4): 10/0\1,
(4, 5): 0/\0 1\/10,
(4, 6): 0/\0 0\/0,
(5, 5): 10/0\1,
(5, 6): 0/\0 1\/10,
(6, 6): 10/0\1}, 3)
({(1, 1): 1/1\1,
(1, 2): 0/\0 1\/10,
(1, 3): 1/\0 0\/1,
(1, 4): 0/\0 0\/0,
(1, 5): 0/\0 0\/0,
(1, 6): 0/\0 0\/0,
(2, 2): 10/0\1,
(2, 3): 1/\1 1\/1,
(2, 4): 0/\1 1\/0,
(2, 5): 0/\1 1\/0,
(2, 6): 0/\0 1\/10,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 0/\0 0\/0,
(3, 6): 10/\1 0\/0,
(4, 4): 10/0\1,
(4, 5): 0/\0 1\/10,
(4, 6): 0/\0 0\/0,
(5, 5): 10/0\1,
(5, 6): 0/\0 1\/10,
(6, 6): 10/0\1}, 6)
({(1, 1): 1/1\1,
(1, 2): 0/\0 1\/10,
(1, 3): 1/\0 0\/1,
(1, 4): 0/\0 0\/0,
(1, 5): 0/\0 0\/0,
(1, 6): 0/\0 0\/0,
(2, 2): 10/0\1,
(2, 3): 1/\1 1\/1,
(2, 4): 0/\1 1\/0,
(2, 5): 0/\0 1\/10,
(2, 6): 0/\0 0\/0,
(3, 3): 1/1\1,
(3, 4): 0/\0 1\/10,
(3, 5): 10/\1 0\/0,
(3, 6): 0/\1 1\/0,
(4, 4): 10/0\1,
(4, 5): 0/\0 1\/10,
(4, 6): 0/\0 0\/0,
(5, 5): 10/0\1,
(5, 6): 0/\0 1\/10,
(6, 6): 10/0\1}, 6)
({(1, 1): 1/1\1,
(1, 2): 0/\0 1\/10,
(1, 3): 1/\0 0\/1,
(1, 4): 0/\0 0\/0,
(1, 5): 0/\0 0\/0,
(1, 6): 0/\0 0\/0,
(2, 2): 10/0\1,
(2, 3): 1/\1 1\/1,
(2, 4): 0/\0 1\/10,
(2, 5): 0/\0 0\/0,
(2, 6): 0/\0 0\/0,
(3, 3): 1/1\1,
(3, 4): 10/\1 1\/10,
(3, 5): 0/\1 1\/0,
(3, 6): 0/\1 1\/0,
(4, 4): 10/0\1,
(4, 5): 0/\0 1\/10,
(4, 6): 0/\0 0\/0,
(5, 5): 10/0\1,
(5, 6): 0/\0 1\/10,
(6, 6): 10/0\1}, 6)
expecting 9 9
-analogues for skew reverse plane partitions
Stanley-Chen have a -analogue of the Okounkov-Olshanski formula for the generating function of skew semistandard tableaux.
Our last main results are -analogues of the Okounkov-Olshanski formula for the generating function of skew reverse plane partitions. Let .
Theorem (1st -analogue): ,
where and is the minimum such that replacing by still gives a semistandard tableaux.
Example: For . From the theory of -partitions or computing it directly the answer for
Error in lines 1-1
Traceback (most recent call last):
File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 1234, in execute
flags=compile_flags), namespace, locals)
File "", line 1, in <module>
NameError: name 'f1' is not defined