Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
95 views
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier from sklearn import datasets from sklearn.model_selection import train_test_split iris = datasets.load_iris() print(iris.keys()) # dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names']) X = iris.data y = iris.target # Setup arrays to store train and test accuracies neighbors = np.arange(1, 20) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) # Loop over different values of k for i, k in enumerate(neighbors): # Setup a k-NN Classifier with k neighbors: knn knn = KNeighborsClassifier(n_neighbors=k) # Fit the classifier to the training data knn.fit(X_train, y_train) #Compute accuracy on the training set train_accuracy[i] = knn.score(X_train, y_train) #Compute accuracy on the testing set test_accuracy[i] = knn.score(X_test, y_test) # Generate plot plt.title('k-NN: Varying Number of Neighbors') plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy') plt.plot(neighbors, train_accuracy, label = 'Training Accuracy') plt.legend() plt.xlabel('Number of Neighbors') plt.ylabel('Accuracy') plt.show()
['target_names', 'data', 'target', 'DESCR', 'feature_names'] KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=1, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=2, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=3, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=4, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=6, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=7, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=8, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=9, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=10, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=11, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=12, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=13, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=14, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=15, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=16, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=17, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=18, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=19, p=2, weights='uniform') <matplotlib.text.Text object at 0x7fa17d401490> [<matplotlib.lines.Line2D object at 0x7fa17c61f890>] [<matplotlib.lines.Line2D object at 0x7fa17c61ff50>] <matplotlib.legend.Legend object at 0x7fa17c0f1ad0> <matplotlib.text.Text object at 0x7fa17cee4b90> <matplotlib.text.Text object at 0x7fa17c1c8b50>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier from sklearn import datasets from sklearn.model_selection import train_test_split iris = datasets.load_iris() print(iris.keys()) # dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names']) X = iris.data y = iris.target # Setup arrays to store train and test accuracies neighbors = np.arange(1, 2) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) # Loop over different values of k for i, k in enumerate(neighbors): # Setup a k-NN Classifier with k neighbors: knn knn = KNeighborsClassifier(n_neighbors=k) # Fit the classifier to the training data knn.fit(X_train, y_train) #Compute accuracy on the training set train_accuracy[i] = knn.score(X_train, y_train) #Compute accuracy on the testing set test_accuracy[i] = knn.score(X_test, y_test) # Generate plot plt.title('k-NN: Varying Number of Neighbors') plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy') plt.plot(neighbors, train_accuracy, label = 'Training Accuracy') plt.legend() plt.xlabel('Number of Neighbors') plt.ylabel('Accuracy') plt.show()
['target_names', 'data', 'target', 'DESCR', 'feature_names'] KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=1, p=2, weights='uniform') <matplotlib.text.Text object at 0x7fa17d0e1450> [<matplotlib.lines.Line2D object at 0x7fa17d143e50>] [<matplotlib.lines.Line2D object at 0x7fa17d143750>] <matplotlib.legend.Legend object at 0x7fa17d143810> <matplotlib.text.Text object at 0x7fa17d756390> <matplotlib.text.Text object at 0x7fa17c0b4990>
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier from sklearn import datasets from sklearn.model_selection import train_test_split iris = datasets.load_iris() print(iris.keys()) # dict_keys(['data', 'target', 'target_names', 'DESCR', 'feature_names']) X = iris.data y = iris.target # Setup arrays to store train and test accuracies neighbors = np.arange(1, 50) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) # Loop over different values of k for i, k in enumerate(neighbors): # Setup a k-NN Classifier with k neighbors: knn knn = KNeighborsClassifier(n_neighbors=k) # Fit the classifier to the training data knn.fit(X_train, y_train) #Compute accuracy on the training set train_accuracy[i] = knn.score(X_train, y_train) #Compute accuracy on the testing set test_accuracy[i] = knn.score(X_test, y_test) # Generate plot plt.title('k-NN: Varying Number of Neighbors') plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy') plt.plot(neighbors, train_accuracy, label = 'Training Accuracy') plt.legend() plt.xlabel('Number of Neighbors') plt.ylabel('Accuracy') plt.show()
['target_names', 'data', 'target', 'DESCR', 'feature_names'] KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=1, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=2, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=3, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=4, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=5, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=6, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=7, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=8, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=9, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=10, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=11, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=12, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=13, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=14, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=15, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=16, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=17, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=18, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=19, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=20, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=21, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=22, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=23, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=24, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=25, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=26, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=27, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=28, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=29, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=30, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=31, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=32, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=33, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=34, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=35, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=36, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=37, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=38, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=39, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=40, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=41, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=42, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=43, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=44, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=45, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=46, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=47, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=48, p=2, weights='uniform') KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=49, p=2, weights='uniform') <matplotlib.text.Text object at 0x7fa17d5bf2d0> [<matplotlib.lines.Line2D object at 0x7fa17d69b9d0>] [<matplotlib.lines.Line2D object at 0x7fa17d69b8d0>] <matplotlib.legend.Legend object at 0x7fa17cad9d50> <matplotlib.text.Text object at 0x7fa17d1c5d90> <matplotlib.text.Text object at 0x7fa17d981990>