Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Project: Bernoulli configurations
Path: sagelets/test.ipynb
Views: 379License: GPL3
Image: ubuntu2204
Kernel: SageMath 10.3
In [82]:
In [55]:
In [85]:
In [86]:
-65/4*s^2 + 35*s
In [12]:
/home/user/sagelets/Trials/Brilliant_November_Problem.ipynb:76: "def prob(n=30,ns=1,s=.1):\n",
/home/user/sagelets/Trials/Brilliant_November_Problem.ipynb:112: "def prob(n=30,ns=1,s=.1):\n",
/home/user/sagelets/Trials/Brilliant_November_Problem.ipynb:116: "def maxprob(n=30,rng=[1,3],s=.1):\n",
/home/user/sagelets/Trials/Brilliant_November_Problem.ipynb:129: "def _(n=input_box(default=30,width=10),c=input_box(default=3,width=10),p=input_box(default=1/10,width=10),auto_update=false):\n",
/home/user/sagelets/Trials/Brilliant_November_Problem.ipynb:169: "def prob(n=30,ns=1,s=.1):\n",
/home/user/sagelets/Trials/Brilliant_November_Problem.ipynb:173: "def maxprob(n=30,rng=[1,3],s=.1):\n",
/home/user/sagelets/Trials/PopularMechanicsProblem.ipynb:253: "def pol(u=-8,v=13,clr='black',symbol=false):\n",
/home/user/sagelets/Trials/PopularMechanicsProblem.ipynb:481: "def pol(u=-8,v=13,b=10,clr='black',symbol=false):\n",
/home/user/sagelets/Trials/PopularMechanicsProblem.ipynb:697: "def pol(u=-8,v=13,clr='black',symbol=false):\n",
/home/user/sagelets/Trials/PopularMechanicsProblem.ipynb:708: "def _(t1=input_box(30,width=10),auto_update=false):\n",
/home/user/sagelets/Trials/PopularMechanicsProblem.ipynb:878: "def pol(u=-8,v=13,t1=30,b=10,clr='black',symbol=false):\n",
/home/user/sagelets/Trials/PopularMechanicsProblem.ipynb:976: "def pol(u=-8,v=13,b=10,clr='black',symbol=false):\n",
/home/user/sagelets/Trials/PopularMechanicsProblem.ipynb:988: "def _(b=input_box(10,width=10),t1=input_box(30,width=10),auto_update=false):\n",
/home/user/sagelets/Trials/activate-1.ipynb:657: "def set_axes_labels(graph, xlabel, ylabel, zlabel,minpt=true, **kwds):\n",
/home/user/sagelets/Trials/activate-1.ipynb:703: "def _(t=input_box(default=6/10,width=10),b1=input_box(default=3/10,width=10),c1=input_box(default=9/10,width=10),d1=input_box(default=1/4,width=10), e1=input_box(default=1/2,width=10)):\n",
/home/user/sagelets/Trials/codevelop.ipynb:536: "def set_axes_labels(graph, xlabel, ylabel, zlabel,minpt=true, **kwds):\n",
In [87]:
Clearly, only one solution is realistic
In [3]:
In [9]:
-1.0 -1.0 -1.0
In [4]:
In [1]:
hi
In [1]:
-2*b*t3*x + 2*c*t3*x - 3*d*t3*x + 3*e*t3*x - 2*c*t3 + 3*d*t3 + 2*b*x - 2*c*x + 2*c
In [0]:
In [24]:
[[[ 2 4 6]
[ 8 10 12]
[14 16 18]]
[[22 24 26]
[28 30 32]
[34 36 38]]
[[42 44 46]
[48 50 52]
[54 56 58]]]
In [2]:
[[3 4]
[6 8]]
In [4]:
/ext/sage/10.3/local/var/lib/sage/venv-python3.11.1/lib/python3.11/site-packages/scikits/__init__.py:1: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
__import__("pkg_resources").declare_namespace(__name__)
/ext/sage/10.3/local/var/lib/sage/venv-python3.11.1/lib/python3.11/site-packages/scikits/__init__.py:1: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('scikits')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
__import__("pkg_resources").declare_namespace(__name__)
In [35]:
In [36]:
In [24]:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[24], line 1
----> 1 apf=tly.decomposition.CP.fit(a)
2 show(apf[Integer(0)],apf[Integer(1)])
TypeError: DecompositionMixin.fit() missing 1 required positional argument: 'tensor'
In [5]:
In [16]:
3
In [49]:
In [50]:
trap 0
rt0 = 0
rt1 = 0.3333333332593333
In [9]:
In [60]:
In [18]:
In [3]:
(81.8526016111049, 0.491876458806038, 0.491876458806038, 1.52651314801874)
In [1]:
In [20]:
In [30]:
[(0.000000000000000, 0.800000000000000),
(-0.591887121551798, 1.14172618895780),
(0.000000000000000, -0.850000000000000),
(0.418527397346263, -0.608363094478902)]
In [31]:
[(1, 0),
(0.443502884254440, 0.321293759578949),
(-0.900000000000000, 0.000000000000000),
(-0.900000000000000, -0.454377992302390)]
In [101]:
In [22]:
Help on function poly4 in module __main__:
poly4(t1, t2, t3, t4, A=(1, 0), C=(-1, 0), labels=False, model=True)
returns the quadrilateral ABCD defined by the parameters t1 t2 t3 t4.
In [5]:
In [43]:
(-0.900000000000000, -0.454377992302390)
In [36]:
Help on function window in module __main__:
window(L=0, U=0, ep=0.100000000000000, sz=0, cen=(0, 0), figsize=5, color='blue', alpha=0, axes=False, aspect_ratio=1)
In [32]:
In [48]:
In [0]:
In [13]:
[0.4873949580, 0.9094733512, 1.000000000, 0.2436974790]
In [6]:
In [2]:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[2], line 1
----> 1 pic.show(title='bill was here')
NameError: name 'pic' is not defined
In [18]:
In [20]:
In [0]:
In [227]:
In [244]:
In [208]:
In [213]:
0.9922011152869369424814976667934448505*x^2 + (4.014623336809837343425993029288696660772513783868e-50)*(5.53322086527351939533095e24*y + 4.4075154954283119820116e23)^2 - 1.00000000000000
In [231]:
In [0]:
In [0]:
In [246]:
middle quadrilateral, dimension 4
trap 0
rt1 = 0.17968012009352616
trap 1
done
trap 2
done
trap 3
done
In [0]:
In [158]:
In [166]:
In [163]:
In [44]:
In [0]:
In [45]:
In [93]:
In [141]:
In [62]:
In [53]:
1
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [8]:
[(1.00000000000000, 0.000000000000000),
(0.309016994374947, 0.951056516295154),
(-0.809016994374947, 0.587785252292473),
(-0.809016994374948, -0.587785252292473),
(0.309016994374947, -0.951056516295154)]
In [0]:
In [0]:
In [0]:
In [35]:
(8.00000, 0.0200000)
In [0]:
In [0]:
In [0]:
In [0]:
In [32]:
In [37]:
143948740534.56198
In [30]:
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
Cell In[30], line 1
----> 1 cond(A)
NameError: name 'cond' is not defined
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [7]:
2025
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [5]:
4096
In [4]:
72*sqrt(5) + 161
In [0]:
In [17]:
5.19180654857877
In [21]:
5.39492056215378
In [2]:
(h - x)^2/a^2 + (k - y)^2/b^2 - 1
In [548]:
[[k == r97, a2 == 0, b2 == 0], [k == 1/2*(w1^2*x1^2 - y1^2*z1^2 - w1^2 + y1^2)/(w1*x1^2 - y1*z1^2 - w1 + y1), a2 == -1/4*(w1^4*x1^4 + y1^4*z1^4 - 2*w1^4*x1^2 + w1^4 - 4*w1*y1^3 + y1^4 - 2*(w1^2*x1^2 - 3*w1^2)*y1^2 + 2*(2*w1*y1^3 - y1^4 - (w1^2*x1^2 + w1^2)*y1^2)*z1^2 + 4*(w1^3*x1^2 - w1^3)*y1)/(w1*y1^3 + (w1^2*x1^2 - 2*w1^2)*y1^2 + (w1^2*y1^2 - w1*y1^3)*z1^2 - (w1^3*x1^2 - w1^3)*y1), b2 == 1/4*(w1^4*x1^4 + y1^4*z1^4 - 2*w1^4*x1^2 + w1^4 - 4*w1*y1^3 + y1^4 - 2*(w1^2*x1^2 - 3*w1^2)*y1^2 + 2*(2*w1*y1^3 - y1^4 - (w1^2*x1^2 + w1^2)*y1^2)*z1^2 + 4*(w1^3*x1^2 - w1^3)*y1)/(w1^2*x1^4 + y1^2*z1^4 - 2*w1^2*x1^2 - 2*((w1*x1^2 - w1)*y1 + y1^2)*z1^2 + w1^2 + 2*(w1*x1^2 - w1)*y1 + y1^2)]]
In [561]:
-w1^3*x1^2*y1 + w1^2*x1^2*y1^2 + w1^2*y1^2*z1^2 - w1*y1^3*z1^2 + w1^3*y1 - 2*w1^2*y1^2 + w1*y1^3 + (w1^3*x1^2*y1 - w1^2*x1^2*y1^2 - w1^2*y1^2*z1^2 + w1*y1^3*z1^2 - w1^3*y1 + 2*w1^2*y1^2 - w1*y1^3)*x^2 + (w1^2*x1^4 - 2*w1*x1^2*y1*z1^2 + y1^2*z1^4 - 2*w1^2*x1^2 + 2*w1*x1^2*y1 + 2*w1*y1*z1^2 - 2*y1^2*z1^2 + w1^2 - 2*w1*y1 + y1^2)*y^2 - (w1^3*x1^4 - w1^2*x1^2*y1*z1^2 - w1*x1^2*y1^2*z1^2 + y1^3*z1^4 - 2*w1^3*x1^2 + w1^2*x1^2*y1 + w1*x1^2*y1^2 + w1^2*y1*z1^2 + w1*y1^2*z1^2 - 2*y1^3*z1^2 + w1^3 - w1^2*y1 - w1*y1^2 + y1^3)*y
In [565]:
-(w1^2*x1^2 - y1^2*z1^2 - w1^2 + y1^2)*(w1*x1^2 - y1*z1^2 - w1 + y1)
In [0]:
In [476]:
In [0]:
In [337]:
In [335]:
4*(w1*x1^2 - y1*z1^2 - w1 + y1)*(w1 - y1)*w1*y1/((w1*x1 + y1*z1 + w1 - y1)*(w1*x1 + y1*z1 - w1 + y1)*(w1*x1 - y1*z1 + w1 - y1)*(w1*x1 - y1*z1 - w1 + y1))
In [378]:
Help on function Rot in module __main__:
Rot(Pol=[[0, 0], [1, 0], [1, 3]], cen=[0, 0], th=30, deg=True, dec=True)
Rot(Pol=[[0,0],[1,0],[1,3]],cen=[0,0],th=30,deg=true) returns the rotation of Pol by th degrees about cen.
In [339]:
4*(w1*x1^2 - y1*z1^2 - w1 + y1)*(w1 - y1)*w1*y1/((w1*x1 + y1*z1 + w1 - y1)*(w1*x1 + y1*z1 - w1 + y1)*(w1*x1 - y1*z1 + w1 - y1)*(w1*x1 - y1*z1 - w1 + y1))
4*(w1*x1^2 - y1*z1^2 - w1 + y1)^2/((w1*x1 + y1*z1 + w1 - y1)*(w1*x1 + y1*z1 - w1 + y1)*(w1*x1 - y1*z1 + w1 - y1)*(w1*x1 - y1*z1 - w1 + y1))
In [577]:
In [0]:
In [40]:
1
[
[k == 1/2*(w1^2*x1^2 - y1^2*z1^2 - w1^2 + y1^2)/(w1*x1^2 - y1*z1^2 - w1 + y1), a == -4*(w1*y1^3 + (w1^2*x1^2 - 2*w1^2)*y1^2 + (w1^2*y1^2 - w1*y1^3)*z1^2 - (w1^3*x1^2 - w1^3)*y1)/(w1^4*x1^4 + y1^4*z1^4 - 2*w1^4*x1^2 + w1^4 - 4*w1*y1^3 + y1^4 - 2*(w1^2*x1^2 - 3*w1^2)*y1^2 + 2*(2*w1*y1^3 - y1^4 - (w1^2*x1^2 + w1^2)*y1^2)*z1^2 + 4*(w1^3*x1^2 - w1^3)*y1), b == 4*(w1^2*x1^4 + y1^2*z1^4 - 2*w1^2*x1^2 - 2*((w1*x1^2 - w1)*y1 + y1^2)*z1^2 + w1^2 + 2*(w1*x1^2 - w1)*y1 + y1^2)/(w1^4*x1^4 + y1^4*z1^4 - 2*w1^4*x1^2 + w1^4 - 4*w1*y1^3 + y1^4 - 2*(w1^2*x1^2 - 3*w1^2)*y1^2 + 2*(2*w1*y1^3 - y1^4 - (w1^2*x1^2 + w1^2)*y1^2)*z1^2 + 4*(w1^3*x1^2 - w1^3)*y1)]
]
In [51]:
In [55]:
In [0]:
In [25]:
In [32]:
-(w1^2*y1 - w1*y1^2)*x^2 - (w1*x1^2 - y1*z1^2 - w1 + y1)*y^2 + w1^2*y1 - w1*y1^2 + (w1^2*x1^2 - y1^2*z1^2 - w1^2 + y1^2)*y
In [507]:
1
[
[b == (w1*x1^2*z1 - ((z1^2 + w1 - 1)*x1 - w1*z1)*y1 - w1*z1)/(w1^2*x1*y1 - w1*y1^2*z1), g == -(w1^2*x1^2 + w1^2*y1 - (z1^2 + w1 - 1)*y1^2 - w1^2)/(w1^2*x1*y1 - w1*y1^2*z1)]
]
In [0]:
In [0]:
In [512]:
In [0]:
In [384]:
[(0.939692620785908, 0.342020143325669), (0.644770251820833, 0.267971995712102), (-0.939692620785908, -0.342020143325669), (-1.10446916245796, -0.701647244780572)]
2
In [434]:
2
In [68]:
In [67]:
The code below was generated by GPT-3.5 using this prompt:
save a diagram in the png format to my directory
In [0]: