#Parameters
a = .02
b = .05
c = -.03
d = -.01
# Initial condition
RInit = 1
JInit = 1
# End time
tMax = 20
# Standard SIR model
def ODE_RHS(t, Y):
(R,J) = Y
dR = a*R + b*J
dJ = c*R + d*J
return (dR, dJ)
# Set up numerical solution of ODE
solver = ode_solver(function = ODE_RHS,
y_0 = (RInit, JInit),
t_span = (0, tMax),
algorithm = 'rk8pd')
# Numerically solve
solver.ode_solve(num_points = 500)
# Plot solution
show(
plot(solver.interpolate_solution(i = 0), 0, tMax, legend_label = 'R(t)', color = 'green')
+ plot(solver.interpolate_solution(i = 1), 0, tMax, legend_label = 'J(t)', color = 'red')
)
# code from https://sage.math.clemson.edu:34567/home/pub/161/
# Thanks to Jan Medlock