T = ( R 4 f ( R ) 2 sin ( θ ) 2 ( ∂ ϕ ∂ R ) 2 + 2 R 2 f ( R ) sin ( θ ) 2 ∂ ϕ ∂ u ∂ ϕ ∂ R + R 2 f ( R ) sin ( θ ) 2 ( ∂ ϕ ∂ θ ) 2 + R 2 f ( R ) ( ∂ ϕ ∂ φ ) 2 + 2 sin ( θ ) 2 ∂ ϕ ∂ u 2 2 sin ( θ ) 2 ) d u ⊗ d u + ( − R 2 f ( R ) sin ( θ ) 2 ( ∂ ϕ ∂ R ) 2 + sin ( θ ) 2 ( ∂ ϕ ∂ θ ) 2 + ( ∂ ϕ ∂ φ ) 2 2 sin ( θ ) 2 ) d u ⊗ d R + ∂ ϕ ∂ u ∂ ϕ ∂ θ d u ⊗ d θ + ∂ ϕ ∂ u ∂ ϕ ∂ φ d u ⊗ d φ + ( − R 2 f ( R ) sin ( θ ) 2 ( ∂ ϕ ∂ R ) 2 + sin ( θ ) 2 ( ∂ ϕ ∂ θ ) 2 + ( ∂ ϕ ∂ φ ) 2 2 sin ( θ ) 2 ) d R ⊗ d u + ( ∂ ϕ ∂ R ) 2 d R ⊗ d R + ∂ ϕ ∂ R ∂ ϕ ∂ θ d R ⊗ d θ + ∂ ϕ ∂ R ∂ ϕ ∂ φ d R ⊗ d φ + ∂ ϕ ∂ u ∂ ϕ ∂ θ d θ ⊗ d u + ∂ ϕ ∂ R ∂ ϕ ∂ θ d θ ⊗ d R + ( − R 2 f ( R ) sin ( θ ) 2 ( ∂ ϕ ∂ R ) 2 + 2 sin ( θ ) 2 ∂ ϕ ∂ u ∂ ϕ ∂ R − sin ( θ ) 2 ( ∂ ϕ ∂ θ ) 2 + ( ∂ ϕ ∂ φ ) 2 2 sin ( θ ) 2 ) d θ ⊗ d θ + ∂ ϕ ∂ θ ∂ ϕ ∂ φ d θ ⊗ d φ + ∂ ϕ ∂ u ∂ ϕ ∂ φ d φ ⊗ d u + ∂ ϕ ∂ R ∂ ϕ ∂ φ d φ ⊗ d R + ∂ ϕ ∂ θ ∂ ϕ ∂ φ d φ ⊗ d θ + ( − 1 2 R 2 f ( R ) sin ( θ ) 2 ( ∂ ϕ ∂ R ) 2 − sin ( θ ) 2 ∂ ϕ ∂ u ∂ ϕ ∂ R − 1 2 sin ( θ ) 2 ( ∂ ϕ ∂ θ ) 2 + 1 2 ( ∂ ϕ ∂ φ ) 2 ) d φ ⊗ d φ \displaystyle T = \left( \frac{R^{4} f\left(R\right)^{2} \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + 2 \, R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} + R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + R^{2} f\left(R\right) \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u}^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} u\otimes \mathrm{d} u + \left( -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} u\otimes \mathrm{d} R + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} u\otimes \mathrm{d} {\theta} + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} u\otimes \mathrm{d} {\varphi} + \left( -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} R\otimes \mathrm{d} u + \left(\frac{\partial\,\phi}{\partial R}\right)^{2} \mathrm{d} R\otimes \mathrm{d} R + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} R\otimes \mathrm{d} {\theta} + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} R\otimes \mathrm{d} {\varphi} + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} {\theta}\otimes \mathrm{d} u + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} {\theta}\otimes \mathrm{d} R + \left( -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} - \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{\partial\,\phi}{\partial {\theta}} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\theta}\otimes \mathrm{d} {\varphi} + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\varphi}\otimes \mathrm{d} u + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\varphi}\otimes \mathrm{d} R + \frac{\partial\,\phi}{\partial {\theta}} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\varphi}\otimes \mathrm{d} {\theta} + \left( -\frac{1}{2} \, R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} - \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} - \frac{1}{2} \, \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \frac{1}{2} \, \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2} \right) \mathrm{d} {\varphi}\otimes \mathrm{d} {\varphi} T = 2 sin ( θ ) 2 R 4 f ( R ) 2 sin ( θ ) 2 ( ∂ R ∂ ϕ ) 2 + 2 R 2 f ( R ) sin ( θ ) 2 ∂ u ∂ ϕ ∂ R ∂ ϕ + R 2 f ( R ) sin ( θ ) 2 ( ∂ θ ∂ ϕ ) 2 + R 2 f ( R ) ( ∂ φ ∂ ϕ ) 2 + 2 sin ( θ ) 2 ∂ u ∂ ϕ 2 d u ⊗ d u + − 2 sin ( θ ) 2 R 2 f ( R ) sin ( θ ) 2 ( ∂ R ∂ ϕ ) 2 + sin ( θ ) 2 ( ∂ θ ∂ ϕ ) 2 + ( ∂ φ ∂ ϕ ) 2 d u ⊗ d R + ∂ u ∂ ϕ ∂ θ ∂ ϕ d u ⊗ d θ + ∂ u ∂ ϕ ∂ φ ∂ ϕ d u ⊗ d φ + − 2 sin ( θ ) 2 R 2 f ( R ) sin ( θ ) 2 ( ∂ R ∂ ϕ ) 2 + sin ( θ ) 2 ( ∂ θ ∂ ϕ ) 2 + ( ∂ φ ∂ ϕ ) 2 d R ⊗ d u + ( ∂ R ∂ ϕ ) 2 d R ⊗ d R + ∂ R ∂ ϕ ∂ θ ∂ ϕ d R ⊗ d θ + ∂ R ∂ ϕ ∂ φ ∂ ϕ d R ⊗ d φ + ∂ u ∂ ϕ ∂ θ ∂ ϕ d θ ⊗ d u + ∂ R ∂ ϕ ∂ θ ∂ ϕ d θ ⊗ d R + − 2 sin ( θ ) 2 R 2 f ( R ) sin ( θ ) 2 ( ∂ R ∂ ϕ ) 2 + 2 sin ( θ ) 2 ∂ u ∂ ϕ ∂ R ∂ ϕ − sin ( θ ) 2 ( ∂ θ ∂ ϕ ) 2 + ( ∂ φ ∂ ϕ ) 2 d θ ⊗ d θ + ∂ θ ∂ ϕ ∂ φ ∂ ϕ d θ ⊗ d φ + ∂ u ∂ ϕ ∂ φ ∂ ϕ d φ ⊗ d u + ∂ R ∂ ϕ ∂ φ ∂ ϕ d φ ⊗ d R + ∂ θ ∂ ϕ ∂ φ ∂ ϕ d φ ⊗ d θ + ( − 2 1 R 2 f ( R ) sin ( θ ) 2 ( ∂ R ∂ ϕ ) 2 − sin ( θ ) 2 ∂ u ∂ ϕ ∂ R ∂ ϕ − 2 1 sin ( θ ) 2 ( ∂ θ ∂ ϕ ) 2 + 2 1 ( ∂ φ ∂ ϕ ) 2 ) d φ ⊗ d φ