Contact Us!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutSign UpSign In

Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.

| Download

Peeling at an infinity obtained from a generic spherically symmetric degenerate horizon through an extended Couch-Torrence inversion

Views: 97
License: GPL3
Image: ubuntu2004
Kernel: SageMath 9.8

Peeling at an infinity obtained from generic spherically symmetric degenerate horizon through an extended Couch-Torrence inversion

This SageMath notebook accompanies the article Peeling at extreme black hole horizons by Jack Borthwick, Eric Gourgoulhon and Jean-Philippe Nicolas, arXIv:2303.14574. It involves differential geometry tools implemented in SageMath through the SageManifolds project.

version()
'SageMath version 9.8, Release Date: 2023-02-11'
%display latex

We declare the spacetime manifold M\mathscr{M} as a 4-dimensional Lorentzian manifold, with the keyword signature='negative'to indicate that the metric signature is chosen to be (+,,,)(+,-,-,-):

M = Manifold(4, 'M', latex_name=r'\mathscr{M}', structure='Lorentzian', signature='negative') print(M) M
4-dimensional Lorentzian manifold M

M\displaystyle \mathscr{M}

The coordinates (u,R,θ,φ)(u,R,\theta,\varphi) on M\mathscr{M}:

CKC.<u,R,th,sph> = M.chart(r"u R th:(0,pi):\theta sph:(0,2*pi):\varphi") print(CKC); CKC
Chart (M, (u, R, th, sph))

(M,(u,R,θ,φ))\displaystyle \left(\mathscr{M},(u, R, {\theta}, {\varphi})\right)

The conformal metric gg (denoted g^\hat{g} in the article, cf. Eq. (5.7)):

g = M.metric() f = function('f',nargs=1) g[0,0] = f(R)*R^2 g[0,1] = -1 g[2,2] = -1 g[3,3] = -sin(th)^2 g.display()

g=R2f(R)dudududRdRdudθdθsin(θ)2dφdφ\displaystyle g = R^{2} f\left(R\right) \mathrm{d} u\otimes \mathrm{d} u -\mathrm{d} u\otimes \mathrm{d} R -\mathrm{d} R\otimes \mathrm{d} u -\mathrm{d} {\theta}\otimes \mathrm{d} {\theta} -\sin\left({\theta}\right)^{2} \mathrm{d} {\varphi}\otimes \mathrm{d} {\varphi}

g.inverse().display()

g1=uRRuR2f(R)RRθθ1sin(θ)2φφ\displaystyle g^{-1} = -\frac{\partial}{\partial u }\otimes \frac{\partial}{\partial R }-\frac{\partial}{\partial R }\otimes \frac{\partial}{\partial u } -R^{2} f\left(R\right) \frac{\partial}{\partial R }\otimes \frac{\partial}{\partial R } -\frac{\partial}{\partial {\theta} }\otimes \frac{\partial}{\partial {\theta} } -\frac{1}{\sin\left({\theta}\right)^{2}} \frac{\partial}{\partial {\varphi} }\otimes \frac{\partial}{\partial {\varphi} }

Connection coefficients and curvature

The Levi-Civita connection:

nabla = g.connection()
g.christoffel_symbols_display()

Γuuuuuu=12R2fR+Rf(R)ΓRuuRuu=12R4f(R)fR+R3f(R)2ΓRuRRuR=12R2fRRf(R)Γθφφθφφ=cos(θ)sin(θ)Γφθφφθφ=cos(θ)sin(θ)\displaystyle \begin{array}{lcl} \Gamma_{ \phantom{\, u} \, u \, u }^{ \, u \phantom{\, u} \phantom{\, u} } & = & \frac{1}{2} \, R^{2} \frac{\partial\,f}{\partial R} + R f\left(R\right) \\ \Gamma_{ \phantom{\, R} \, u \, u }^{ \, R \phantom{\, u} \phantom{\, u} } & = & \frac{1}{2} \, R^{4} f\left(R\right) \frac{\partial\,f}{\partial R} + R^{3} f\left(R\right)^{2} \\ \Gamma_{ \phantom{\, R} \, u \, R }^{ \, R \phantom{\, u} \phantom{\, R} } & = & -\frac{1}{2} \, R^{2} \frac{\partial\,f}{\partial R} - R f\left(R\right) \\ \Gamma_{ \phantom{\, {\theta}} \, {\varphi} \, {\varphi} }^{ \, {\theta} \phantom{\, {\varphi}} \phantom{\, {\varphi}} } & = & -\cos\left({\theta}\right) \sin\left({\theta}\right) \\ \Gamma_{ \phantom{\, {\varphi}} \, {\theta} \, {\varphi} }^{ \, {\varphi} \phantom{\, {\theta}} \phantom{\, {\varphi}} } & = & \frac{\cos\left({\theta}\right)}{\sin\left({\theta}\right)} \end{array}

Riem = g.riemann()
Ric = g.ricci() Ric.display()

Ric(g)=(12R4f(R)2fR2+2R3f(R)fR+R2f(R)2)dudu+(12R22fR22RfRf(R))dudR+(12R22fR22RfRf(R))dRdu+dθdθ+sin(θ)2dφdφ\displaystyle \mathrm{Ric}\left(g\right) = \left( \frac{1}{2} \, R^{4} f\left(R\right) \frac{\partial^2\,f}{\partial R ^ 2} + 2 \, R^{3} f\left(R\right) \frac{\partial\,f}{\partial R} + R^{2} f\left(R\right)^{2} \right) \mathrm{d} u\otimes \mathrm{d} u + \left( -\frac{1}{2} \, R^{2} \frac{\partial^2\,f}{\partial R ^ 2} - 2 \, R \frac{\partial\,f}{\partial R} - f\left(R\right) \right) \mathrm{d} u\otimes \mathrm{d} R + \left( -\frac{1}{2} \, R^{2} \frac{\partial^2\,f}{\partial R ^ 2} - 2 \, R \frac{\partial\,f}{\partial R} - f\left(R\right) \right) \mathrm{d} R\otimes \mathrm{d} u +\mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \sin\left({\theta}\right)^{2} \mathrm{d} {\varphi}\otimes \mathrm{d} {\varphi}

Scal = -g.ricci_scalar() # sign correction here Scal.display()

r(g):MR(u,R,θ,φ)R22fR24RfR2f(R)+2\displaystyle \begin{array}{llcl} -\mathrm{r}\left(g\right):& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & -R^{2} \frac{\partial^2\,f}{\partial R ^ 2} - 4 \, R \frac{\partial\,f}{\partial R} - 2 \, f\left(R\right) + 2 \end{array}

Calculation of the d'Alembertian

phi = M.scalar_field(function('phi')(u,R,th,sph), name='phi', latex_name=r'\phi') phi.display()

ϕ:MR(u,R,θ,φ)ϕ(u,R,θ,φ)\displaystyle \begin{array}{llcl} \phi:& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & \phi\left(u, R, {\theta}, {\varphi}\right) \end{array}

dal = phi.laplacian(g) dal

Δg(ϕ)\displaystyle \Delta_{g}\left(\phi\right)

dal.display()

Δg(ϕ):MR(u,R,θ,φ)R2f(R)sin(θ)22ϕR2+(R2fR+2Rf(R))sin(θ)2ϕR+2sin(θ)22ϕuR+cos(θ)sin(θ)ϕθ+sin(θ)22ϕθ2+2ϕφ2sin(θ)2\displaystyle \begin{array}{llcl} \Delta_{g}\left(\phi\right):& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \frac{\partial^2\,\phi}{\partial R ^ 2} + {\left(R^{2} \frac{\partial\,f}{\partial R} + 2 \, R f\left(R\right)\right)} \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial R} + 2 \, \sin\left({\theta}\right)^{2} \frac{\partial^2\,\phi}{\partial u\partial R} + \cos\left({\theta}\right) \sin\left({\theta}\right) \frac{\partial\,\phi}{\partial {\theta}} + \sin\left({\theta}\right)^{2} \frac{\partial^2\,\phi}{\partial {\theta} ^ 2} + \frac{\partial^2\,\phi}{\partial {\varphi} ^ 2}}{\sin\left({\theta}\right)^{2}} \end{array}

We're now tackling the energy current

First we define the observer: the Morawetz vector field KK

K = M.vector_field(u^2, -2*(1+u*R), 0, 0, name='K') K.display()

K=u2u+(2Ru2)R\displaystyle K = u^{2} \frac{\partial}{\partial u } + \left( -2 \, R u - 2 \right) \frac{\partial}{\partial R }

KK's Killing form:

KilK = g.lie_derivative(K) KilK.display()

(2R3ufR2R2fR4Rf(R)+4R)dudu\displaystyle \left( -2 \, R^{3} u \frac{\partial\,f}{\partial R} - 2 \, R^{2} \frac{\partial\,f}{\partial R} - 4 \, R f\left(R\right) + 4 \, R \right) \mathrm{d} u\otimes \mathrm{d} u

Check of Eq. (5.10):

g(K, K).expr().factor()

(R2u2f(R)+4Ru+4)u2\displaystyle {\left(R^{2} u^{2} f\left(R\right) + 4 \, R u + 4\right)} u^{2}

Then we define the Killing vector ξ=u\xi = \partial_u

xi = M.vector_field(1, 0, 0, 0, name='xi', latex_name=r'\xi') xi.display()

ξ=u\displaystyle \xi = \frac{\partial}{\partial u }

Now the gradient and differential of a scalar field

phi.display()

ϕ:MR(u,R,θ,φ)ϕ(u,R,θ,φ)\displaystyle \begin{array}{llcl} \phi:& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & \phi\left(u, R, {\theta}, {\varphi}\right) \end{array}

from sage.manifolds.operators import grad
v = grad(phi) v.display()

grad(ϕ)=ϕRu+(R2f(R)ϕRϕu)Rϕθθϕφsin(θ)2φ\displaystyle \mathrm{grad}\left(\phi\right) = -\frac{\partial\,\phi}{\partial R} \frac{\partial}{\partial u } + \left( -R^{2} f\left(R\right) \frac{\partial\,\phi}{\partial R} - \frac{\partial\,\phi}{\partial u} \right) \frac{\partial}{\partial R } -\frac{\partial\,\phi}{\partial {\theta}} \frac{\partial}{\partial {\theta} } -\frac{\frac{\partial\,\phi}{\partial {\varphi}}}{\sin\left({\theta}\right)^{2}} \frac{\partial}{\partial {\varphi} }

dphi = diff(phi) dphi.display()

dϕ=ϕudu+ϕRdR+ϕθdθ+ϕφdφ\displaystyle \mathrm{d}\phi = \frac{\partial\,\phi}{\partial u} \mathrm{d} u + \frac{\partial\,\phi}{\partial R} \mathrm{d} R + \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} {\theta} + \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\varphi}

Calculation of g (Grav v , Grad v)

Sc = g(v,v) Sc.display()

g(grad(ϕ),grad(ϕ)):MR(u,R,θ,φ)R2f(R)sin(θ)2(ϕR)2+2sin(θ)2ϕuϕR+sin(θ)2(ϕθ)2+(ϕφ)2sin(θ)2\displaystyle \begin{array}{llcl} g\left(\mathrm{grad}\left(\phi\right),\mathrm{grad}\left(\phi\right)\right):& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} + \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{\sin\left({\theta}\right)^{2}} \end{array}

An equivalent way to get the same scalar field:

Sc0 = g.inverse()(dphi, dphi) Sc0.display()

g1(dϕ,dϕ):MR(u,R,θ,φ)R2f(R)sin(θ)2(ϕR)2+2sin(θ)2ϕuϕR+sin(θ)2(ϕθ)2+(ϕφ)2sin(θ)2\displaystyle \begin{array}{llcl} g^{-1}\left(\mathrm{d}\phi,\mathrm{d}\phi\right):& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} + \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{\sin\left({\theta}\right)^{2}} \end{array}

Stress-energy tensor for the wave equation

T = dphi*dphi - (1/2)*Sc*g T.set_name('T') T.display()

T=(R4f(R)2sin(θ)2(ϕR)2+2R2f(R)sin(θ)2ϕuϕR+R2f(R)sin(θ)2(ϕθ)2+R2f(R)(ϕφ)2+2sin(θ)2ϕu22sin(θ)2)dudu+(R2f(R)sin(θ)2(ϕR)2+sin(θ)2(ϕθ)2+(ϕφ)22sin(θ)2)dudR+ϕuϕθdudθ+ϕuϕφdudφ+(R2f(R)sin(θ)2(ϕR)2+sin(θ)2(ϕθ)2+(ϕφ)22sin(θ)2)dRdu+(ϕR)2dRdR+ϕRϕθdRdθ+ϕRϕφdRdφ+ϕuϕθdθdu+ϕRϕθdθdR+(R2f(R)sin(θ)2(ϕR)2+2sin(θ)2ϕuϕRsin(θ)2(ϕθ)2+(ϕφ)22sin(θ)2)dθdθ+ϕθϕφdθdφ+ϕuϕφdφdu+ϕRϕφdφdR+ϕθϕφdφdθ+(12R2f(R)sin(θ)2(ϕR)2sin(θ)2ϕuϕR12sin(θ)2(ϕθ)2+12(ϕφ)2)dφdφ\displaystyle T = \left( \frac{R^{4} f\left(R\right)^{2} \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + 2 \, R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} + R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + R^{2} f\left(R\right) \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u}^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} u\otimes \mathrm{d} u + \left( -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} u\otimes \mathrm{d} R + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} u\otimes \mathrm{d} {\theta} + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} u\otimes \mathrm{d} {\varphi} + \left( -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} R\otimes \mathrm{d} u + \left(\frac{\partial\,\phi}{\partial R}\right)^{2} \mathrm{d} R\otimes \mathrm{d} R + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} R\otimes \mathrm{d} {\theta} + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} R\otimes \mathrm{d} {\varphi} + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} {\theta}\otimes \mathrm{d} u + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\theta}} \mathrm{d} {\theta}\otimes \mathrm{d} R + \left( -\frac{R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} - \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} {\theta}\otimes \mathrm{d} {\theta} + \frac{\partial\,\phi}{\partial {\theta}} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\theta}\otimes \mathrm{d} {\varphi} + \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\varphi}\otimes \mathrm{d} u + \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\varphi}\otimes \mathrm{d} R + \frac{\partial\,\phi}{\partial {\theta}} \frac{\partial\,\phi}{\partial {\varphi}} \mathrm{d} {\varphi}\otimes \mathrm{d} {\theta} + \left( -\frac{1}{2} \, R^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial R}\right)^{2} - \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} - \frac{1}{2} \, \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + \frac{1}{2} \, \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2} \right) \mathrm{d} {\varphi}\otimes \mathrm{d} {\varphi}

The energy current associated with our choice of observer

J = T.contract(K) J.set_name('J') J.display()

J=(2R2u2f(R)sin(θ)2ϕuϕR+2u2sin(θ)2ϕu2+(R4u2f(R)2sin(θ)2+2R3uf(R)sin(θ)2+2R2f(R)sin(θ)2)ϕR2+(R2u2f(R)sin(θ)2+2Rusin(θ)2+2sin(θ)2)(ϕθ)2+(R2u2f(R)+2Ru+2)(ϕφ)22sin(θ)2)du+(u2sin(θ)2(ϕθ)2+u2(ϕφ)2+(R2u2f(R)sin(θ)2+4Rusin(θ)2+4sin(θ)2)(ϕR)22sin(θ)2)dR+(u2ϕuϕθ2(Ru+1)ϕRϕθ)dθ+(u2ϕuϕφ2(Ru+1)ϕRϕφ)dφ\displaystyle J = \left( \frac{2 \, R^{2} u^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} + 2 \, u^{2} \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u}^{2} + {\left(R^{4} u^{2} f\left(R\right)^{2} \sin\left({\theta}\right)^{2} + 2 \, R^{3} u f\left(R\right) \sin\left({\theta}\right)^{2} + 2 \, R^{2} f\left(R\right) \sin\left({\theta}\right)^{2}\right)} \frac{\partial\,\phi}{\partial R}^{2} + {\left(R^{2} u^{2} f\left(R\right) \sin\left({\theta}\right)^{2} + 2 \, R u \sin\left({\theta}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2}\right)} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + {\left(R^{2} u^{2} f\left(R\right) + 2 \, R u + 2\right)} \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} u + \left( -\frac{u^{2} \sin\left({\theta}\right)^{2} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + u^{2} \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2} + {\left(R^{2} u^{2} f\left(R\right) \sin\left({\theta}\right)^{2} + 4 \, R u \sin\left({\theta}\right)^{2} + 4 \, \sin\left({\theta}\right)^{2}\right)} \left(\frac{\partial\,\phi}{\partial R}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \right) \mathrm{d} R + \left( u^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\theta}} - 2 \, {\left(R u + 1\right)} \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\theta}} \right) \mathrm{d} {\theta} + \left( u^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial {\varphi}} - 2 \, {\left(R u + 1\right)} \frac{\partial\,\phi}{\partial R} \frac{\partial\,\phi}{\partial {\varphi}} \right) \mathrm{d} {\varphi}

The energy density on a u=constu=\mathrm{const} slice

f0 = J(xi) f0.display()

J(ξ):MR(u,R,θ,φ)2R2u2f(R)sin(θ)2ϕuϕR+2u2sin(θ)2ϕu2+(R4u2f(R)2sin(θ)2+2R3uf(R)sin(θ)2+2R2f(R)sin(θ)2)ϕR2+(R2u2f(R)sin(θ)2+2Rusin(θ)2+2sin(θ)2)(ϕθ)2+(R2u2f(R)+2Ru+2)(ϕφ)22sin(θ)2\displaystyle \begin{array}{llcl} J\left(\xi\right):& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & \frac{2 \, R^{2} u^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} + 2 \, u^{2} \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u}^{2} + {\left(R^{4} u^{2} f\left(R\right)^{2} \sin\left({\theta}\right)^{2} + 2 \, R^{3} u f\left(R\right) \sin\left({\theta}\right)^{2} + 2 \, R^{2} f\left(R\right) \sin\left({\theta}\right)^{2}\right)} \frac{\partial\,\phi}{\partial R}^{2} + {\left(R^{2} u^{2} f\left(R\right) \sin\left({\theta}\right)^{2} + 2 \, R u \sin\left({\theta}\right)^{2} + 2 \, \sin\left({\theta}\right)^{2}\right)} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + {\left(R^{2} u^{2} f\left(R\right) + 2 \, R u + 2\right)} \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, \sin\left({\theta}\right)^{2}} \end{array}

The energy density on an Hs,u0\mathcal{H}_{s,u_0} slice

A normal vector field to Hs,u0\mathcal{H}_{s,u_0}:

s = var('s', domain='real') n = M.vector_field(1, (f(R)*R^2)*(s - 1)/s, 0, 0, name='n') n.display()

n=u+R2(s1)f(R)sR\displaystyle n = \frac{\partial}{\partial u } + \frac{R^{2} {\left(s - 1\right)} f\left(R\right)}{s} \frac{\partial}{\partial R }

f1 = J(n) f1.display()

J(n):MR(u,R,θ,φ)2R2su2f(R)sin(θ)2ϕuϕR+2su2sin(θ)2ϕu2+(R4u2f(R)2sin(θ)22(R3sf(R)2R3f(R))usin(θ)22(R2sf(R)2R2f(R))sin(θ)2)ϕR2+(R2u2f(R)sin(θ)2+2Rsusin(θ)2+2ssin(θ)2)(ϕθ)2+(R2u2f(R)+2Rsu+2s)(ϕφ)22ssin(θ)2\displaystyle \begin{array}{llcl} J\left(n\right):& \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & \frac{2 \, R^{2} s u^{2} f\left(R\right) \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u} \frac{\partial\,\phi}{\partial R} + 2 \, s u^{2} \sin\left({\theta}\right)^{2} \frac{\partial\,\phi}{\partial u}^{2} + {\left(R^{4} u^{2} f\left(R\right)^{2} \sin\left({\theta}\right)^{2} - 2 \, {\left(R^{3} s f\left(R\right) - 2 \, R^{3} f\left(R\right)\right)} u \sin\left({\theta}\right)^{2} - 2 \, {\left(R^{2} s f\left(R\right) - 2 \, R^{2} f\left(R\right)\right)} \sin\left({\theta}\right)^{2}\right)} \frac{\partial\,\phi}{\partial R}^{2} + {\left(R^{2} u^{2} f\left(R\right) \sin\left({\theta}\right)^{2} + 2 \, R s u \sin\left({\theta}\right)^{2} + 2 \, s \sin\left({\theta}\right)^{2}\right)} \left(\frac{\partial\,\phi}{\partial {\theta}}\right)^{2} + {\left(R^{2} u^{2} f\left(R\right) + 2 \, R s u + 2 \, s\right)} \left(\frac{\partial\,\phi}{\partial {\varphi}}\right)^{2}}{2 \, s \sin\left({\theta}\right)^{2}} \end{array}

The 4-volume form and the 3-volume form on a u=constu=\mathrm{const} slice

eps = g.volume_form() eps.display()

ϵg=sin(θ)dudRdθdφ\displaystyle \epsilon_{g} = \sin\left({\theta}\right) \mathrm{d} u\wedge \mathrm{d} R\wedge \mathrm{d} {\theta}\wedge \mathrm{d} {\varphi}

We have g(ξ,ξ)=R2f(R)g(\xi,\xi) = R^2f(R) so our vector v=1R2f(R)ξv = \frac{1}{R^2f(R)} \xi

g(xi, xi).expr()

R2f(R)\displaystyle R^{2} f\left(R\right)

v = M.vector_field(1/(R^2*f(R)), 0, 0, 0, name='v') v.display()

v=1R2f(R)u\displaystyle v = \frac{1}{R^{2} f\left(R\right)} \frac{\partial}{\partial u }

g(xi, v).expr()

1\displaystyle 1

The volume 3-form:

tvol = v['^i']*eps['_{ijkl}'] tvol.display()

sin(θ)R2f(R)dRdθdφ\displaystyle \frac{\sin\left({\theta}\right)}{R^{2} f\left(R\right)} \mathrm{d} R\wedge \mathrm{d} {\theta}\wedge \mathrm{d} {\varphi}

The 3-volume form on an Hs,u0\mathcal{H}_{s,u_0} slice as well as I+\mathscr{I}^+

On Hs,u0\mathcal{H}_{s,u_0} we take l=Rl = -\partial_R and we have g(n,l)=1g(n,l) = 1

l = M.vector_field(0, -1, 0, 0, name='l') l.display()

l=R\displaystyle l = -\frac{\partial}{\partial R }

g(n, l).expr()

1\displaystyle 1

scrvol = l['^i']*eps['_{ijkl}'] scrvol.display()

sin(θ)dudθdφ\displaystyle \sin\left({\theta}\right) \mathrm{d} u\wedge \mathrm{d} {\theta}\wedge \mathrm{d} {\varphi}

Error terms in the conservation law for J : aJa=(aKb)Tab16ScalgϕKϕ\nabla^a J_a = \nabla^{(a} K^{b)} T_{ab} - \frac{1}{6} \mathrm{Scal}_g \phi \nabla_{K} \phi

divJ = KilK.up(g)['^{ij}']*T['_{ij}'] - s*(Scal/6)*phi*dphi(K) divJ.display()

MR(u,R,θ,φ)16(R22fR2+4RfR+2f(R)2)su2ϕ(u,R,θ,φ)ϕu13((R32fR2+4R2fR+2Rf(R)2R)su+(R22fR2+4RfR+2f(R)2)s)ϕ(u,R,θ,φ)ϕR2(R3ufR+R2fR+2Rf(R)2R)ϕR2\displaystyle \begin{array}{llcl} & \mathscr{M} & \longrightarrow & \mathbb{R} \\ & \left(u, R, {\theta}, {\varphi}\right) & \longmapsto & \frac{1}{6} \, {\left(R^{2} \frac{\partial^2\,f}{\partial R ^ 2} + 4 \, R \frac{\partial\,f}{\partial R} + 2 \, f\left(R\right) - 2\right)} s u^{2} \phi\left(u, R, {\theta}, {\varphi}\right) \frac{\partial\,\phi}{\partial u} - \frac{1}{3} \, {\left({\left(R^{3} \frac{\partial^2\,f}{\partial R ^ 2} + 4 \, R^{2} \frac{\partial\,f}{\partial R} + 2 \, R f\left(R\right) - 2 \, R\right)} s u + {\left(R^{2} \frac{\partial^2\,f}{\partial R ^ 2} + 4 \, R \frac{\partial\,f}{\partial R} + 2 \, f\left(R\right) - 2\right)} s\right)} \phi\left(u, R, {\theta}, {\varphi}\right) \frac{\partial\,\phi}{\partial R} - 2 \, {\left(R^{3} u \frac{\partial\,f}{\partial R} + R^{2} \frac{\partial\,f}{\partial R} + 2 \, R f\left(R\right) - 2 \, R\right)} \frac{\partial\,\phi}{\partial R}^{2} \end{array}

This is all controlled by the energy density using uRuR bounded.