ubuntu2004
Kernel: Python 3 (system-wide)
In [1]:
In [2]:
Out[2]:
In [3]:
Out[3]:
In [4]:
Out[4]:
149
In [5]:
Out[5]:
In [6]:
Out[6]:
In [7]:
Out[7]:
train size = 111, test size = 11, total size = 150
In [8]:
Out[8]:
In [9]:
In [10]:
Out[10]:
In [11]:
Out[11]:
==============================
Results of Dickey Fuller Test:
Test Statistic -2.782635
p-value 0.060797
#Lags Used 0.000000
Number of Observations Used 110.000000
Critical Value (1%) -3.491245
Critical Value (5%) -2.888195
Critical Value (10%) -2.580988
dtype: float64
The next thing to do is to make the series stationary by removing the upward trend through 1st order differencing of the series using the following formula:
1st Differencing (d=1)
In [12]:
Out[12]:
==============================
Results of Dickey Fuller Test:
Test Statistic -1.078853e+01
p-value 2.162826e-19
#Lags Used 0.000000e+00
Number of Observations Used 1.090000e+02
Critical Value (1%) -3.491818e+00
Critical Value (5%) -2.888444e+00
Critical Value (10%) -2.581120e+00
dtype: float64
In [16]:
Out[16]:
==============================
Results of Dickey Fuller Test:
Test Statistic -3.027460
p-value 0.032408
#Lags Used 2.000000
Number of Observations Used 107.000000
Critical Value (1%) -3.492996
Critical Value (5%) -2.888955
Critical Value (10%) -2.581393
dtype: float64
In [33]:
Out[33]:
==============================
Results of Dickey Fuller Test:
Test Statistic -2.710344
p-value 0.072265
#Lags Used 0.000000
Number of Observations Used 106.000000
Critical Value (1%) -3.493602
Critical Value (5%) -2.889217
Critical Value (10%) -2.581533
dtype: float64
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
p = 2, q=0, d=1
In [0]:
In [0]:
Best: ARIMA(0,1,0)x(0,1,2,12)
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]: