Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
84 views
ubuntu2004
Kernel: SageMath 9.2
#weeks 7&8 #simulate the model for a range of parameter values and initial conditions var('S','A','I','R') beta=0.09 alpha=0.11 m1=0.06 m2=0.12 m3=0.01 d=0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime=(alpha*S*A)-(m1*A) Iprime=(beta*S*I)-(m2*I)-(d*I) Rprime=(m1*A)+(m2*I)-(m3*R) t=srange(0,100,0.1) sol=desolve_odeint([Sprime,Aprime,Iprime,Rprime],times=t,ics=[1000,100,150,400],dvars=[S,A,I,R]) p=list_plot(list(zip(t,sol[:,0])),color="purple",legend_label="Susceptable",plotjoined=true)+list_plot(list(zip(t,sol[:,1])),color="green",legend_label="Asymptomatic",plotjoined=true)+list_plot(list(zip(t,sol[:,2])),color="red",legend_label="infected",plotjoined=true)+list_plot(list(zip(t,sol[:,3])),color="blue",legend_label="Recovered",plotjoined=true,axes_labels=["time","population"]) show(p)
Image in a Jupyter notebook
@interact def icChanger(icS=(0,1000,50),icA=(0,1000,50),icI=(0,1000,50),icR=(0,1000,50)): var('S','A','I','R') beta = 0.09 alpha = 0.11 m1 = 0.06 m2 = 0.12 m3 = 0.01 d = 0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [icS,icA,icI,icR],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function icChanger at 0x7fab240e6a60> with 4 widgets icS: IntSlider(value=500, descrip…
@interact def BetaChanger(beta=(0,1,0.1)): var('S','A','I','R') alpha = 0.11 m1 = 0.06 m2 = 0.12 m3 = 0.01 d = 0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [1000,100,150,400],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function BetaChanger at 0x7fa8ff50e9d0> with 1 widget beta: FloatSlider(value=0.0, des…
@interact def AlphaChanger(alpha=(0,1,0.01)): var('S','A','I','R') beta = 0.09 m1 = 0.06 m2 = 0.12 m3 = 0.01 d = 0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [1000,100,150,400],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function AlphaChanger at 0x7fa8ff50e820> with 1 widget alpha: FloatSlider(value=0.0, d…
@interact def m1Changer(m1=(0,1,0.01)): var('S','A','I','R') alpha=0.11 beta = 0.09 m2 = 0.12 m3 = 0.01 d = 0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [1000,100,150,400],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function m1Changer at 0x7fa8fa9538b0> with 1 widget m1: FloatSlider(value=0.0, descrip…
@interact def m2Changer(m2=(0,1,0.01)): var('S','A','I','R') alpha=0.11 beta = 0.09 m1=0.06 m3 = 0.01 d = 0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [1000,100,150,400],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function m2Changer at 0x7fa900de71f0> with 1 widget m2: FloatSlider(value=0.0, descrip…
@interact def m3Changer(m3=(0,1,0.01)): var('S','A','I','R') beta = 0.09 alpha=0.11 m1=0.06 m2 = 0.12 d = 0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [1000,100,150,400],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function m3Changer at 0x7fa8fa54c8b0> with 1 widget m3: FloatSlider(value=0.0, descrip…
@interact def dChanger(d=(0,1,0.01)): var('S','A','I','R') beta = 0.09 alpha=0.11 m1=0.06 m2 = 0.12 m3 = 0.01 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [1000,100,150,400],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function dChanger at 0x7fa8fa54c3a0> with 1 widget d: FloatSlider(value=0.0, descripti…
#week 9 finding the EPs of the model. We added a new parameter d2 to represent the natural death rate of the susceptible population var('S','A','I','R') beta=0.09 alpha=0.11 m1=0.06 m2=0.12 m3=0.01 d=0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) solve([Sprime,Aprime,Iprime,Rprime],[S,A,I,R])
[[S == 0, A == 0, I == 0, R == 0], [S == (17/9), A == 0, I == (-17/15), R == (-68/5)]]
#week 9 testing the stability of the EP 0,0,0,0) # we will not be testing the stability of the other EP (17/9,0,-17/5,-68/5) because it involves negative values that do not make sense in the context (population) of our model k=jacobian([Sprime,Aprime,Iprime,Rprime],[S,A,I,R]) show(k)
(−0.110000000000000 A−0.0900000000000000 I−0.0300000000000000−0.110000000000000 S−0.0900000000000000 S0.01000000000000000.110000000000000 A0.110000000000000 S−0.0600000000000000000.0900000000000000 I00.0900000000000000 S−0.170000000000000000.06000000000000000.120000000000000−0.0100000000000000)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrrr} -0.110000000000000 \, A - 0.0900000000000000 \, I - 0.0300000000000000 & -0.110000000000000 \, S & -0.0900000000000000 \, S & 0.0100000000000000 \\ 0.110000000000000 \, A & 0.110000000000000 \, S - 0.0600000000000000 & 0 & 0 \\ 0.0900000000000000 \, I & 0 & 0.0900000000000000 \, S - 0.170000000000000 & 0 \\ 0 & 0.0600000000000000 & 0.120000000000000 & -0.0100000000000000 \end{array}\right)
#week 9 kmatrix=k(S=0,A=0,I=0,R=0) show (kmatrix)
(−0.0300000000000000000.01000000000000000−0.06000000000000000000−0.170000000000000000.06000000000000000.120000000000000−0.0100000000000000)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrrr} -0.0300000000000000 & 0 & 0 & 0.0100000000000000 \\ 0 & -0.0600000000000000 & 0 & 0 \\ 0 & 0 & -0.170000000000000 & 0 \\ 0 & 0.0600000000000000 & 0.120000000000000 & -0.0100000000000000 \end{array}\right)
#week 9 eig_vals=kmatrix.eigenvalues() show(eig_vals)
[−17100,−3100,−1100,−350]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{17}{100}, -\frac{3}{100}, -\frac{1}{100}, -\frac{3}{50}\right]
#week 9 #since all the eigenvalues are negative, the EP (0,0,0,0) is a stable node
#week 9 k2matrix=k(S=(17/9),A=0,I=(-17/15),R=(-68/5)) #show (k2matrix)
eig_valss=k2matrix.eigenvalues() show(eig_valss)
[−1500 654−27500,1500 654−27500,17100,133900]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{1}{500} \, \sqrt{654} - \frac{27}{500}, \frac{1}{500} \, \sqrt{654} - \frac{27}{500}, \frac{17}{100}, \frac{133}{900}\right]
#week 10 @interact def m3Changer(m3Slider=(0,1,0.01)): var('S','A','I','R') beta = 0.09 alpha = 0.11 m1 = 0.06 m2 = 0.12 m3 = m3Slider d1 = 0.05 d2 = 0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d1*I) Rprime = (m1*A)+(m2*I)-(m3*R) k = jacobian([Sprime,Aprime,Iprime,Rprime], [S,A,I,R]) kmatrix = k(S=(17/9),A=0,I=(-17/15),R=(-68/5)) eig_vals = kmatrix.eigenvalues() #show(eig_vals) #how to extract only the real part of the eigenvalues? for i in [0,1,2,3]: eig_vals[i].n().real() print(eig_vals[i].n().real())
Interactive function <function m3Changer at 0x7fa8fa1b4790> with 1 widget m3Slider: FloatSlider(value=0.0, d…
#week10 @interact def m3Changer(m3=(0,1,0.01)): var('S','A','I','R') beta = 0.09 alpha=0.11 m1=0.06 m2 = 0.12 d = 0.05 d2=0.03 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Aprime = (alpha*S*A)-(m1*A) Iprime = (beta*S*I)-(m2*I)-(d*I) Rprime = (m1*A)+(m2*I)-(m3*R) t = srange(0,100,0.1) sol = desolve_odeint([Sprime,Aprime,Iprime,Rprime], times = t, ics = [1000,100,150,400],dvars=[S,A,I,R]) p = list_plot(list(zip(t,sol[:,0])),color = "purple",legend_label = "Susceptible", plotjoined=true) + list_plot(list(zip(t,sol[:,1])),color = "green",legend_label = "Asymptomatic", plotjoined=true) + list_plot(list(zip(t,sol[:,2])),color = "red",legend_label = "Infected",plotjoined=true) + list_plot(list(zip(t,sol[:,3])),color = "blue",legend_label ="Recovered", plotjoined=true, axes_labels = ["t","Pop"]) show(p)
Interactive function <function m3Changer at 0x7fa8fa1b4310> with 1 widget m3: FloatSlider(value=0.0, descrip…
#final week var('S','J','A','I','R') beta=0.09 alpha=0.11 gamma=0.05 m1=0.06 m2=0.12 m3=0.01 m4=0.2 m5=0.3 d=0.05 d2=0.03 d3=0.01 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Jprime=(m4*R)-(gamma*J*I)-(d3*J) Aprime=(alpha*S*A)-(m1*A) Iprime=(beta*S*I)+(gamma*J*I)-(m2*I)-(d*I)-(m5*I) Rprime=(m1*A)+(m2*I)-(m3*R)-(m4*R)+(m5*I) t=srange(0,100,0.1) sol=desolve_odeint([Sprime,Jprime,Aprime,Iprime,Rprime],times=t,ics=[1000,500,100,150,400],dvars=[S,J,A,I,R]) p=list_plot(list(zip(t,sol[:,0])),color="purple",legend_label="Susceptable",plotjoined=true)+list_plot(list(zip(t,sol[:,1])),color="green",legend_label="Juveniles",plotjoined=true)+list_plot(list(zip(t,sol[:,2])),color="red",legend_label="Asymptomatic",plotjoined=true)+list_plot(list(zip(t,sol[:,3])),color="blue",legend_label="Infected",plotjoined=true)+ list_plot(list(zip(t,sol[:,4])),color="yellow",legend_label="Recovered",plotjoined=true,axes_labels=["time","population"]) show(p)
Image in a Jupyter notebook
@interact def gammaChanger(gamma=(0,3,0.01)): var('S','J','A','I','R') beta=0.09 alpha=0.11 m1=0.06 m2=0.12 m3=0.01 m4=0.2 m5=0.3 d=0.05 d2=0.03 d3=0.01 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Jprime=(m4*R)33-(gamma*J*I)-(d3*J) Aprime=(alpha*S*A)-(m1*A) Iprime=(beta*S*I)+(gamma*J*I)-(m2*I)-(d*I)-(m5*I) Rprime=(m1*A)+(m2*I)-(m3*R)-(m4*R)+(m5*I) t=srange(0,100,0.1) sol=desolve_odeint([Sprime,Jprime,Aprime,Iprime,Rprime],times=t,ics=[1000,500,100,150,400],dvars=[S,J,A,I,R]) p=list_plot(list(zip(t,sol[:,0])),color="purple",legend_label="Susceptable",plotjoined=true)+list_plot(list(zip(t,sol[:,1])),color="green",legend_label="Juveniles",plotjoined=true)+list_plot(list(zip(t,sol[:,2])),color="red",legend_label="Asymptomatic",plotjoined=true)+list_plot(list(zip(t,sol[:,3])),color="blue",legend_label="Infected",plotjoined=true)+ list_plot(list(zip(t,sol[:,4])),color="yellow",legend_label="Recovered",plotjoined=true,axes_labels=["time","population"]) show(p)
Interactive function <function gammaChanger at 0x7fa8fa95db80> with 1 widget gamma: FloatSlider(value=1.0, d…
#final week var('S','J','A','I','R') beta=0.09 alpha=0.11 gamma=0.05 m1=0.06 m2=0.12 m3=0.01 m4=0.2 m5=0.3 d=0.05 d2=0.03 d3=0.01 Sprime = (m3*R)-(beta*S*I)-(alpha*S*A)-(d2*S) Jprime=(m4*R)-(gamma*J*I)-(d3*J) Aprime=(alpha*S*A)-(m1*A) Iprime=(beta*S*I)+(gamma*J*I)-(m2*I)-(d*I)-(m5*I) Rprime=(m1*A)+(m2*I)-(m3*R)-(m4*R)+(m5*I) show(solve([Sprime,Jprime,Aprime,Iprime,Rprime],[S,J,A,I,R]))
[[S=0,J=0,A=0,I=0,R=0],[S=(611),J=(−1811),A=(−63220),I=0,R=(−9110)],[S=−59 37−289,J=37+15,A=0,I=215 37−1715,R=415 37−3415],[S=59 37−289,J=−37+15,A=0,I=−215 37−1715,R=−415 37−3415],[S=(611),J=(46355),A=(4461160500),I=(−553275),R=(−11528730250)]]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[\left[S = 0, J = 0, A = 0, I = 0, R = 0\right], \left[S = \left(\frac{6}{11}\right), J = \left(-\frac{18}{11}\right), A = \left(-\frac{63}{220}\right), I = 0, R = \left(-\frac{9}{110}\right)\right], \left[S = -\frac{5}{9} \, \sqrt{37} - \frac{28}{9}, J = \sqrt{37} + 15, A = 0, I = \frac{2}{15} \, \sqrt{37} - \frac{17}{15}, R = \frac{4}{15} \, \sqrt{37} - \frac{34}{15}\right], \left[S = \frac{5}{9} \, \sqrt{37} - \frac{28}{9}, J = -\sqrt{37} + 15, A = 0, I = -\frac{2}{15} \, \sqrt{37} - \frac{17}{15}, R = -\frac{4}{15} \, \sqrt{37} - \frac{34}{15}\right], \left[S = \left(\frac{6}{11}\right), J = \left(\frac{463}{55}\right), A = \left(\frac{44611}{60500}\right), I = \left(-\frac{553}{275}\right), R = \left(-\frac{115287}{30250}\right)\right]\right]
#final week newwk=jacobian([Sprime,Jprime,Aprime,Iprime,Rprime],[S,J,A,I,R]) show(newwk)
(−0.110000000000000 A−0.0900000000000000 I−0.03000000000000000−0.110000000000000 S−0.0900000000000000 S0.01000000000000000−0.0500000000000000 I−0.01000000000000000−0.0500000000000000 J0.2000000000000000.110000000000000 A00.110000000000000 S−0.0600000000000000000.0900000000000000 I0.0500000000000000 I00.0500000000000000 J+0.0900000000000000 S−0.4700000000000000000.06000000000000000.420000000000000−0.210000000000000)\renewcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrrrr} -0.110000000000000 \, A - 0.0900000000000000 \, I - 0.0300000000000000 & 0 & -0.110000000000000 \, S & -0.0900000000000000 \, S & 0.0100000000000000 \\ 0 & -0.0500000000000000 \, I - 0.0100000000000000 & 0 & -0.0500000000000000 \, J & 0.200000000000000 \\ 0.110000000000000 \, A & 0 & 0.110000000000000 \, S - 0.0600000000000000 & 0 & 0 \\ 0.0900000000000000 \, I & 0.0500000000000000 \, I & 0 & 0.0500000000000000 \, J + 0.0900000000000000 \, S - 0.470000000000000 & 0 \\ 0 & 0 & 0.0600000000000000 & 0.420000000000000 & -0.210000000000000 \end{array}\right)
#1st EP kkmatrix=newwk(S=0,J=0,A=0,I=0,R=0) eig_vals=kkmatrix.eigenvalues() show(eig_vals)
[−47100,−21100,−3100,−1100,−350]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{47}{100}, -\frac{21}{100}, -\frac{3}{100}, -\frac{1}{100}, -\frac{3}{50}\right]
#the EP (0,0,0,0,0) is a stable node
#*1st EP (showing only the real part and approximating) kkmatrix=newwk(S=0,J=0,A=0,I=0,R=0) eig_vals=kkmatrix.eigenvalues() for i in [0,1,2,3]: eig_vals[i].n().real() print(eig_vals[i].n().real())
-0.470000000000000 -0.210000000000000 -0.0300000000000000 -0.0100000000000000
#2nd EP kkmatrix=newwk(S=(6/11),J=(-18/11),A=(-63/220),I=(0),R=(-9/110)) eig_vals=kkmatrix.eigenvalues() show(eig_vals)
[−12 (3800000000i 8710571163−17866098000000000)13(i 3+1)−22261 (−i 3+1)8000000 (3800000000i 8710571163−17866098000000000)13−1392000,−12 (3800000000i 8710571163−17866098000000000)13(−i 3+1)−22261 (i 3+1)8000000 (3800000000i 8710571163−17866098000000000)13−1392000,(3800000000i 8710571163−17866098000000000)13+222614000000 (3800000000i 8710571163−17866098000000000)13−1392000,−5531100,−1100]\renewcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{1}{2} \, {\left(\frac{3}{800000000} i \, \sqrt{8710571163} - \frac{1786609}{8000000000}\right)}^{\frac{1}{3}} {\left(i \, \sqrt{3} + 1\right)} - \frac{22261 \, {\left(-i \, \sqrt{3} + 1\right)}}{8000000 \, {\left(\frac{3}{800000000} i \, \sqrt{8710571163} - \frac{1786609}{8000000000}\right)}^{\frac{1}{3}}} - \frac{139}{2000}, -\frac{1}{2} \, {\left(\frac{3}{800000000} i \, \sqrt{8710571163} - \frac{1786609}{8000000000}\right)}^{\frac{1}{3}} {\left(-i \, \sqrt{3} + 1\right)} - \frac{22261 \, {\left(i \, \sqrt{3} + 1\right)}}{8000000 \, {\left(\frac{3}{800000000} i \, \sqrt{8710571163} - \frac{1786609}{8000000000}\right)}^{\frac{1}{3}}} - \frac{139}{2000}, {\left(\frac{3}{800000000} i \, \sqrt{8710571163} - \frac{1786609}{8000000000}\right)}^{\frac{1}{3}} + \frac{22261}{4000000 \, {\left(\frac{3}{800000000} i \, \sqrt{8710571163} - \frac{1786609}{8000000000}\right)}^{\frac{1}{3}}} - \frac{139}{2000}, -\frac{553}{1100}, -\frac{1}{100}\right]
#the EP ((6/11),(-18/11),(-63/220),0,(-9/110)) is a saddle point
#*2nd EP (approximating) kkmatrix=newwk(S=(6/11),J=(-18/11),A=(-63/220),I=(0),R=(-9/110)) eig_vals=kkmatrix.eigenvalues() for i in [0,1,2,3]: eig_vals[i].n() print(eig_vals[i].n())
-0.0414216546529095 + 2.77555756156289e-17*I -0.210442501597286 - 1.38777878078145e-17*I 0.0433641562501955 - 1.38777878078145e-17*I -0.502727272727273
#3rd EP kkmatrix=newwk(S=(-(5/9)*sqrt(37)-(28/9)),J=sqrt(37)+15,A=0,I=((2/15)*sqrt(37)-(17/15)),R=((4/15)*sqrt(37)-(34/15))) eig_vals=kkmatrix.eigenvalues() show(eig_vals) #this EP is a saddle point
ParseError: KaTeX parse error: Too many expansions: infinite loop or need to increase maxExpand setting
#*3rd EP (showing only the real part and approximating) kkmatrix=newwk(S=(-(5/9)*sqrt(37)-(28/9)),J=sqrt(37)+15,A=0,I=((2/15)*sqrt(37)-(17/15)),R=((4/15)*sqrt(37)-(34/15))) eig_vals=kkmatrix.eigenvalues() for i in [0,1,2,3]: eig_vals[i].n() print(eig_vals[i].n())
-0.235733076179253 0.0177133099044273 0.00657076618796292 - 0.0766326752817614*I 0.00657076618796293 + 0.0766326752817614*I
#4th EP kkmatrix=newwk(S=((5/9)*sqrt(37)-(28/9)),J=-1*sqrt(37)+15,A=0,I=((-2/15)*sqrt(37)-(17/15)),R=((-4/15)*sqrt(37)-(34/15))) eig_vals=kkmatrix.eigenvalues() show(eig_vals) #this EP is a saddle point
ParseError: KaTeX parse error: Too many expansions: infinite loop or need to increase maxExpand setting
#*4th EP (only approximating values) kkmatrix=newwk(S=((5/9)*sqrt(37)-(28/9)),J=-1*sqrt(37)+15,A=0,I=((-2/15)*sqrt(37)-(17/15)),R=((-4/15)*sqrt(37)-(34/15))) eig_vals=kkmatrix.eigenvalues() for i in [0,1,2,3]: eig_vals[i].n() print(eig_vals[i].n())
-0.317833294503382 + 2.52299236050494e-18*I -0.0156516448336855 + 1.11439536231446e-17*I 0.136939385115158 - 1.24986920702229e-17*I 0.218757121454142 - 1.16825391342659e-18*I
#*5th EP (showing only the real part and approximating) kkmatrix=newwk(S=(6/11),J=(463/55),A=(44611/60500),I=(-553/275),R=(-115287/30250)) eig_vals=kkmatrix.eigenvalues() for i in [0,1,2,3]: eig_vals[i].n() print(eig_vals[i].n())
--------------------------------------------------------------------------- ArithmeticError Traceback (most recent call last) <ipython-input-33-f5684b383291> in <module> 1 #*5th EP (showing only the real part and approximating) 2 kkmatrix=newwk(S=(Integer(6)/Integer(11)),J=(Integer(463)/Integer(55)),A=(Integer(44611)/Integer(60500)),I=(-Integer(553)/Integer(275)),R=(-Integer(115287)/Integer(30250))) ----> 3 eig_vals=kkmatrix.eigenvalues() 4 for i in [Integer(0),Integer(1),Integer(2),Integer(3)]: 5 eig_vals[i].n() /ext/sage/sage-9.2/local/lib/python3.8/site-packages/sage/matrix/matrix_symbolic_dense.pyx in sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense.eigenvalues (build/cythonized/sage/matrix/matrix_symbolic_dense.c:2937)() 181 maxima_evals = self._maxima_(maxima).eigenvalues()._sage_() 182 if not len(maxima_evals): --> 183 raise ArithmeticError("could not determine eigenvalues exactly using symbolic matrices; try using a different type of matrix via self.change_ring(), if possible") 184 return sum([[ev] * int(mult) for ev, mult in zip(*maxima_evals)], []) 185 ArithmeticError: could not determine eigenvalues exactly using symbolic matrices; try using a different type of matrix via self.change_ring(), if possible
#5th EP kkmatrix=newwk(S=(6/11),J=(463/55),A=(44611/60500),I=(-553/275),R=(-115287/30250)) eig_vals=kkmatrix.eigenvalues() show(eig_vals) #the eigenvalues do not give helpful information for this set of EP. Therefore, we will neglect this EP.
--------------------------------------------------------------------------- ArithmeticError Traceback (most recent call last) <ipython-input-34-5626d3d66e4e> in <module> 1 #5th EP 2 kkmatrix=newwk(S=(Integer(6)/Integer(11)),J=(Integer(463)/Integer(55)),A=(Integer(44611)/Integer(60500)),I=(-Integer(553)/Integer(275)),R=(-Integer(115287)/Integer(30250))) ----> 3 eig_vals=kkmatrix.eigenvalues() 4 show(eig_vals) 5 #the eigenvalues do not give helpful information for this set of EP. Therefore, we will neglect this EP. /ext/sage/sage-9.2/local/lib/python3.8/site-packages/sage/matrix/matrix_symbolic_dense.pyx in sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense.eigenvalues (build/cythonized/sage/matrix/matrix_symbolic_dense.c:2937)() 181 maxima_evals = self._maxima_(maxima).eigenvalues()._sage_() 182 if not len(maxima_evals): --> 183 raise ArithmeticError("could not determine eigenvalues exactly using symbolic matrices; try using a different type of matrix via self.change_ring(), if possible") 184 return sum([[ev] * int(mult) for ev, mult in zip(*maxima_evals)], []) 185 ArithmeticError: could not determine eigenvalues exactly using symbolic matrices; try using a different type of matrix via self.change_ring(), if possible