Oct/31/2017 class notes
\documentclass{article}12% set font encoding for PDFLaTeX or XeLaTeX3\usepackage{ifxetex}4\ifxetex5\usepackage{fontspec}6\else7\usepackage[T1]{fontenc}8\usepackage[utf8]{inputenc}9\usepackage{lmodern}10\fi11\usepackage{amsmath}12% used in maketitle13\title{Class Notes Oct 31 2017}14\author{Derek Stachowiak}1516% Enable SageTeX to run SageMath code right inside this LaTeX file.17% documentation: http://mirrors.ctan.org/macros/latex/contrib/sagetex/sagetexpackage.pdf18% \usepackage{sagetex}1920\begin{document}21\maketitle22Finishing SAES example\\23End round 1: 0010 1110 0100 1011\\24Substitute(Feed into S-Box): 1010 1111 1101 0011\\25Put results from previous step into a matrix by filling down the rows26$\begin{bmatrix}271010 & 1101 \\281111 & 001129\end{bmatrix}$30\\Shift columns31$\begin{bmatrix}321010 & 1101 \\330011 & 111134\end{bmatrix}$35\\Read down columns: 1010 0011 1101 1111\\36xor with round key: 1000 0111 1010 1111\\37C= 0010 0100 0111 0000\\38\\39\textbf{AES:}\\4010 Rounds\\41Skip mix columns in last round\\42128 bits of plain text\\43key is 128, 196 or 256 bits in length\\44Differential cryptoanalysis is faster than brute force for 7 rounds. For this reason 10 rounds was chosen to be secure against future attacks.\\45almost all secure internet fraffic uses AES\\46\\47\\48The problem is you need the key to encrypt or decrypt. AES and DES are examples of symetric key algorithms, i.e. both Alice and Bob need the key and if anyone finds the key then the system is compromised. \\49\\50\\51\textbf{Big Innovation}\\52Pubic key cryptography\\53Allows messages to be sent securely between two people who have no shared secret key\\54\\55\textbf{Public key cryptography}\\56Relies on trap door problem\\57Trap door problem: math problem that is easy to do one way but very difficult the other way\\58\\59Mathematician Rivest,Adelman and Shamir came up with RSA\\60Trap door problem: Factoring\\61Take two primes p,q\\62Easy to multiply n = p * q\\63Very hard to find p and q given n\\64\textbf{Five steps to RSA}\\65Alice will pick two prime numbers p,q(120ish digits in length)\\66n = p * q\\67She picks encryption exponent e (65537 is common)\\68She publishes (n,e)\\69Alice computes $\varphi$(n) = (p-1)(q-1) (this is secret!)\\70Compute $d= e^{-1}$(mod $\varphi$(n)) using Euclids algorithm\\71d is the decryption key (secret)\\7273\end{document}747576