Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
68 views
ubuntu2204
Kernel: Python 3 (system-wide)
import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score # Load the dataset data = pd.read_csv('E:\wine\wine_data.csv') # Prepare the data X = data.drop('quality', axis=1) # Features y = data['quality'] # Target variable # Split the data into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Train the linear regression model model = LinearRegression() model.fit(X_train, y_train) # Make predictions on the test set y_pred = model.predict(X_test) # Evaluate the model mse = mean_squared_error(y_test, y_pred) r2 = r2_score(y_test, y_pred) print("Mean Squared Error:", mse) print("R2 Score:", r2)
--------------------------------------------------------------------------- FileNotFoundError Traceback (most recent call last) /tmp/ipykernel_258/2701258028.py in <cell line: 8>() 6 7 # Load the dataset ----> 8 data = pd.read_csv('E:\wine\wine_data.csv') 9 10 # Prepare the data /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in read_csv(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, date_format, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options, dtype_backend) 910 kwds.update(kwds_defaults) 911 --> 912 return _read(filepath_or_buffer, kwds) 913 914 /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in _read(filepath_or_buffer, kwds) 575 576 # Create the parser. --> 577 parser = TextFileReader(filepath_or_buffer, **kwds) 578 579 if chunksize or iterator: /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in __init__(self, f, engine, **kwds) 1405 1406 self.handles: IOHandles | None = None -> 1407 self._engine = self._make_engine(f, self.engine) 1408 1409 def close(self) -> None: /usr/local/lib/python3.10/dist-packages/pandas/io/parsers/readers.py in _make_engine(self, f, engine) 1659 if "b" not in mode: 1660 mode += "b" -> 1661 self.handles = get_handle( 1662 f, 1663 mode, /usr/local/lib/python3.10/dist-packages/pandas/io/common.py in get_handle(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options) 857 if ioargs.encoding and "b" not in ioargs.mode: 858 # Encoding --> 859 handle = open( 860 handle, 861 ioargs.mode, FileNotFoundError: [Errno 2] No such file or directory: 'E:\\wine\\wine_data.csv'
100 100 100
100