Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
Real-time collaboration for Jupyter Notebooks, Linux Terminals, LaTeX, VS Code, R IDE, and more,
all in one place. Commercial Alternative to JupyterHub.
| Download
Polyhedral Omega Demo
Project: empty project
Path: demo.sagews
Views: 409[[0, 0, -1, 0, 0, 0, 1, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, -1, 0, -1, 0, 0, 0], [1, 0, 1, 0, -1, 0, -1, 0, 0, -1], [1, 0, 0, 0, 0, 0, -1, 0, 0, -1], [0, 0, -1, 0, 1, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]]
Error in lines 14-14
Traceback (most recent call last):
File "/cocalc/lib/python3.11/site-packages/smc_sagews/sage_server.py", line 1250, in execute
exec(
File "", line 1, in <module>
File "", line 2, in runPO
File "/home/user/lds.py", line 24, in __init__
self._cone = geometry.SymbolicCone.macmahon_cone(A,b)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/geometry.py", line 350, in macmahon_cone
return SymbolicCone(generators, apex, openness)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/home/user/geometry.py", line 51, in __init__
self.canonicalize()
File "/home/user/geometry.py", line 113, in canonicalize
pairs.sort(cmp = lambda x,y: lex_cmp(x[0],y[0]))
^^^^^^^^^^
AttributeError: 'zip' object has no attribute 'sort'
A:
1
-1
Computing cones
Cones computation took: 0.000303983688354 secs for 2 cones
Computing parallelepipeds
Parallelepipeds computation took: 0.00177907943726 secs
Computing rational functions
Rational function computation took: 5.81741333008e-05 secs
(1 * [ Cone: generators = ((0, 1), (1, 0)), apex = (0, 0), openness = (0, 0) ] + -1 * [ Cone: generators = ((0, 1), (1, 1)), apex = (0, 0), openness = (1, 0) ] , {[ Cone: generators = ((0, 1), (1, 0)), apex = (0, 0), openness = (0, 0) ]: [(0, 0)], [ Cone: generators = ((0, 1), (1, 1)), apex = (0, 0), openness = (1, 0) ]: [(0, 1)]}, '1*(z0**0*z1**0)/((1-z0**0*z1**1)*(1-z0**1*z1**0))+-1*(z0**0*z1**1)/((1-z0**0*z1**1)*(1-z0**1*z1**1))')
A:
(1, 1, 1)
(1, 1, 1)
(1, 1, 1)
Computing cones
Cones computation took: 0.000964879989624 secs for 3 cones
Computing parallelepipeds
Parallelepipeds computation took: 0.00580501556396 secs
Computing rational functions
Rational function computation took: 8.10623168945e-05 secs
Multivariate Polynomial Ring in z0, z1, z2 over Rational Field
Fraction Field of Multivariate Polynomial Ring in z0, z1, z2 over Rational Field
1*(z0**12*z1**-1*z2**-1)/((1-z0**1*z1**-1*z2**0)*(1-z0**1*z1**0*z2**-1))+1*(z0**0*z1**0*z2**10)/((1-z0**0*z1**1*z2**-1)*(1-z0**1*z1**0*z2**-1))+-1*(z0**0*z1**11*z2**-1)/((1-z0**0*z1**1*z2**-1)*(1-z0**1*z1**-1*z2**0))
Symbolic Ring
(z0, z1, z2)
z0^10 + z0^9*z1 + z0^8*z1^2 + z0^7*z1^3 + z0^6*z1^4 + z0^5*z1^5 + z0^4*z1^6 + z0^3*z1^7 + z0^2*z1^8 + z0*z1^9 + z1^10 + z0^9*z2 + z0^8*z1*z2 + z0^7*z1^2*z2 + z0^6*z1^3*z2 + z0^5*z1^4*z2 + z0^4*z1^5*z2 + z0^3*z1^6*z2 + z0^2*z1^7*z2 + z0*z1^8*z2 + z1^9*z2 + z0^8*z2^2 + z0^7*z1*z2^2 + z0^6*z1^2*z2^2 + z0^5*z1^3*z2^2 + z0^4*z1^4*z2^2 + z0^3*z1^5*z2^2 + z0^2*z1^6*z2^2 + z0*z1^7*z2^2 + z1^8*z2^2 + z0^7*z2^3 + z0^6*z1*z2^3 + z0^5*z1^2*z2^3 + z0^4*z1^3*z2^3 + z0^3*z1^4*z2^3 + z0^2*z1^5*z2^3 + z0*z1^6*z2^3 + z1^7*z2^3 + z0^6*z2^4 + z0^5*z1*z2^4 + z0^4*z1^2*z2^4 + z0^3*z1^3*z2^4 + z0^2*z1^4*z2^4 + z0*z1^5*z2^4 + z1^6*z2^4 + z0^5*z2^5 + z0^4*z1*z2^5 + z0^3*z1^2*z2^5 + z0^2*z1^3*z2^5 + z0*z1^4*z2^5 + z1^5*z2^5 + z0^4*z2^6 + z0^3*z1*z2^6 + z0^2*z1^2*z2^6 + z0*z1^3*z2^6 + z1^4*z2^6 + z0^3*z2^7 + z0^2*z1*z2^7 + z0*z1^2*z2^7 + z1^3*z2^7 + z0^2*z2^8 + z0*z1*z2^8 + z1^2*z2^8 + z0*z2^9 + z1*z2^9 + z2^10
66
A:
(1, 1, 1)
(1, 1, 1)
(1, 1, 1)
Computing cones
Cones computation took: 0.00120496749878 secs for 3 cones
Computing parallelepipeds
Parallelepipeds computation took: 0.00563383102417 secs
Computing rational functions
Rational function computation took: 7.5101852417e-05 secs
[ Cone: generators = ((1, -1, 0), (1, 0, -1)), apex = (10, 0, 0), openness = (1, 1) ]
[ Cone: generators = ((0, 1, -1), (1, 0, -1)), apex = (0, 0, 10), openness = (0, 0) ]
[ Cone: generators = ((0, 1, -1), (1, -1, 0)), apex = (0, 10, 0), openness = (1, 0) ]
A:
(1, 1, 1)
(1, 1, 1)
(1, 1, 1)
Computing cones
Cones computation took: 0.00124502182007 secs for 3 cones
Computing parallelepipeds
Parallelepipeds computation took: 0.061665058136 secs
Computing rational functions
Rational function computation took: 8.98838043213e-05 secs
[ Cone: generators = ((0, 0, 1), (0, 1, -1), (1, 0, -1)), apex = (0, 0, 10), openness = (0, 0, 0) ]
[ Cone: generators = ((1, -1, 0), (1, 0, -1), (1, 0, 0)), apex = (10, 0, 0), openness = (1, 1, 0) ]
[ Cone: generators = ((0, 1, -1), (0, 1, 0), (1, -1, 0)), apex = (0, 10, 0), openness = (1, 0, 0) ]