Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
160 views
ubuntu2004

Symbolic Integration Assignment

Question 0

[1 point] Watch the lecture video here.

Did you watch the video? [Type yes or no.]

Yes

Question 1

[4 points] Compute the following integrals using the integral command.

Part a

sin(3x)sin(2x)dx\displaystyle\int \sin(3x)\sin(2x)\, dx

integral(sin(3*x)*sin(2*x),x) show(_)
-1/10*sin(5*x) + 1/2*sin(x)
110sin(5x)+12sin(x)\displaystyle -\frac{1}{10} \, \sin\left(5 \, x\right) + \frac{1}{2} \, \sin\left(x\right)
110sin(5x)+12sin(x)\displaystyle -\frac{1}{10} \, \sin\left(5 \, x\right) + \frac{1}{2} \, \sin\left(x\right)

Part b

e5tsin(4t)dt\displaystyle\int e^{5t}\sin(4t)\, dt

%var t integral(e^(5*t)*sin(4*t),t) show(_)
-1/41*(4*cos(4*t) - 5*sin(4*t))*e^(5*t)
141(4cos(4t)5sin(4t))e(5t)\displaystyle -\frac{1}{41} \, {\left(4 \, \cos\left(4 \, t\right) - 5 \, \sin\left(4 \, t\right)\right)} e^{\left(5 \, t\right)}

Part c

0π/2(sin(ax))2dx\displaystyle\int_0^{\pi/2} \big(\sin(ax)\big)^2\, dx

%var a integral((sin(a*x))^2,x,0,pi/2) show(_)
1/4*(pi*a - sin(pi*a))/a
πasin(πa)4a\displaystyle \frac{\pi a - \sin\left(\pi a\right)}{4 \, a}

Part d

15ln(x)x2dx\displaystyle\int_1^5\frac{\ln(x)}{x^2}\, dx

integral(ln(x)/x^2,x,1,5) show(_)
-1/5*log(5) + 4/5
15log(5)+45\displaystyle -\frac{1}{5} \, \log\left(5\right) + \frac{4}{5}

Question 2

[1 point] Use the numerical_integral command to compute 01xtan(x)dx\displaystyle\int_0^1 x\tan(x)\, dx

numerical_integral(x*tan(x),0,1)
(0.42808830136517595, 4.7527348874829114e-15)

Question 3

[1 point] The velocity at time tt of a particle travelling in a straight line is given by the equation v(t)=3t34t2+10v(t)=3t^3-4t^2+10. How far does the particle travel from t=10t=10 to t=20t=20?

[Hint: Distance traveled is the integral of velocity.]

%var t numerical_integral(3*t^3-4*t^2+10,10,20)
(103266.66666666669, 1.1464903100962451e-09)

Question 4

[1 point] Let f(x)=2x1x3f(x)=2x\sqrt{1-x^3}.

Part a

Find the area between the graph of ff and the x-axis from x=0x=0 to x=1x=1. Convert Sage's answer to a decimal.

integral(2*x*sqrt(1-x^3),x,0,1) show(_)
2/3*beta(2/3, 3/2)
23B(23,32)\displaystyle \frac{2}{3} \, \operatorname{B}\left(\frac{2}{3}, \frac{3}{2}\right)
N(2/3*beta(2/3, 3/2))
0.739174159779940

Part b

Estimate the area in Part a using left and right Riemann sums with n=100n=100 subintervals.

f(x)=2*x*sqrt(1-x^3) a=0 b=1 n=100 dx=(b-a)/n %var i LS=sum(f(a+i*dx)*dx,i,0,n-1) RS=sum(f(a+i*dx)*dx,i,1,n)

Question 5

[1 point] We are going to compute ddxxsin(x)3t2dt\displaystyle\frac{d}{dx}\int_{x}^{\sin(x)}3t^2\,dt in two ways.

Part a

Use the derivative and integral commands to calculate ddxxsin(x)3t2dt\displaystyle\frac{d}{dx}\int_{x}^{\sin(x)}3t^2\,dt.

%var t integral(3*t^2,t,x,sin(x))
-x^3 + sin(x)^3
derivative(-x^3 + sin(x)^3,x) show(_)
3*cos(x)*sin(x)^2 - 3*x^2
3cos(x)sin(x)23x2\displaystyle 3 \, \cos\left(x\right) \sin\left(x\right)^{2} - 3 \, x^{2}

Part b

The Fundamental Theorem of Calculus implies that ddxg(x)h(x)f(t)dt=f(h(x))h(x)f(g(x))g(x)\displaystyle\frac{d}{dx}\int_{g(x)}^{h(x)}f(t)\,dt=f(h(x))\cdot h'(x)-f(g(x))\cdot g'(x).

With f(t)=3t2f(t)=3t^2, h(x)=sin(x)h(x)=\sin(x), and g(x)=xg(x)=x, calculate f(h(x))h(x)f(g(x))g(x)f(h(x))\cdot h'(x)-f(g(x))\cdot g'(x). [You should get the same answer as part a.]

Question 6

[1 point] We are going to compute 510ddx51x2dx\displaystyle\int_5^{10}\frac{d}{dx}\frac{5}{1-x^2}\,dx in two ways.

Part a

Use the integral and derivative commands to calculate 510ddx51x2dx\displaystyle\int_5^{10}\frac{d}{dx}\frac{5}{1-x^2}\,dx.

integral(5/1-x^2,x,5,10)
-800/3
derivative(-800/3,x) show(_)
0
0\displaystyle 0

Part b

The Fundamental Theorem of Calculus implies that abddxf(x)dx=f(b)f(a)\displaystyle\int_a^{b}\frac{d}{dx}f(x)\,dx=f(b)-f(a).

With f(x)=51x2f(x)=\displaystyle\frac{5}{1-x^2}, calculate f(10)f(5)f(10)-f(5). [You should get the same answer as part a.]

f(x)=5/(1-x^2) integral(f(10-f(5),x,a,b)
Error in lines 2-2 Traceback (most recent call last): File "/cocalc/lib/python3.9/site-packages/smc_sagews/sage_server.py", line 1231, in execute compile(block + '\n', File "<string>", line 1 integral(f(Integer(10)-f(Integer(5)),x,a,b) ^ SyntaxError: unexpected EOF while parsing
%var b f(x)=5/(1-x^2) integral(f(10)-f(5),x,a,b);
125/792*b