Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
<exercise masterit-seed="9471" masterit-slug="C3" masterit-name="Homogeneous second-order linear ODE">
2
<statement>
3
<p>Explain how to find the general solution to each given ODE using
4
exponential functions.</p>
5
<p>For each exponential solution using complex numbers, also provide
6
an alternate general solution using only real numbers.</p>
7
<ol>
8
<li>
9
<me> 0 = 2 \, {x''} + 20 \, {x'} + 58 \, {x} </me>
10
</li>
11
<li>
12
<me> -16 \, {y'} = 2 \, {y''} + 32 \, {y} </me>
13
</li>
14
</ol>
15
</statement>
16
<answer>
17
<me> {x} = c_{1} e^{\left(\left(2 i - 5\right) \, t\right)} + c_{2} e^{\left(-\left(2 i + 5\right) \, t\right)} </me>
18
<me> {x} = {\left(d_{1} \cos\left(2 \, t\right) + d_{2} \sin\left(2 \, t\right)\right)} e^{\left(-5 \, t\right)} </me>
19
<me> {y} = k_{1} t e^{\left(-4 \, t\right)} + k_{2} e^{\left(-4 \, t\right)} </me>
20
</answer>
21
</exercise>
22
23
24