<exercise masterit-seed="9471" masterit-slug="C3" masterit-name="Homogeneous second-order linear ODE">
<statement>
<p>Explain how to find the general solution to each given ODE using
exponential functions.</p>
<p>For each exponential solution using complex numbers, also provide
an alternate general solution using only real numbers.</p>
<ol>
<li>
<me> 0 = 2 \, {x''} + 20 \, {x'} + 58 \, {x} </me>
</li>
<li>
<me> -16 \, {y'} = 2 \, {y''} + 32 \, {y} </me>
</li>
</ol>
</statement>
<answer>
<me> {x} = c_{1} e^{\left(\left(2 i - 5\right) \, t\right)} + c_{2} e^{\left(-\left(2 i + 5\right) \, t\right)} </me>
<me> {x} = {\left(d_{1} \cos\left(2 \, t\right) + d_{2} \sin\left(2 \, t\right)\right)} e^{\left(-5 \, t\right)} </me>
<me> {y} = k_{1} t e^{\left(-4 \, t\right)} + k_{2} e^{\left(-4 \, t\right)} </me>
</answer>
</exercise>