<exercise>
<statement>
<p>
Use Euler's method with <m>h=<xsl:value-of select="h"/></m> to approximate
<m>x(<xsl:value-of select="final/t"/>)</m> and <m>y(<xsl:value-of select="final/t"/>)</m> given the following
system of IVPs.
</p>
<me>
x'=<xsl:value-of select="xp"/>\hspace{2em}
x(<xsl:value-of select="init/t"/>)=<xsl:value-of select="init/x"/>
</me>
<me>
y'=<xsl:value-of select="yp"/>\hspace{2em}
y(<xsl:value-of select="init/t"/>)=<xsl:value-of select="init/y"/>
</me>
</statement>
<answer>
<ul>
<xsl:for-each select="vals/*">
<li>
<m>x(<xsl:value-of select="t"/>)\approx <xsl:value-of select="x"/></m> and
<m>y(<xsl:value-of select="t"/>)\approx <xsl:value-of select="y"/></m>
</li>
</xsl:for-each>
</ul>
</answer>
</exercise>