Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
2
\begin{exerciseStatement}
3
4
5
Explain how to find the general solution to each given ODE using exponential functions.
6
7
8
9
For each exponential solution using complex numbers, also provide an alternate general solution using only real numbers.
10
11
12
\begin{enumerate}[(a)]
13
\item \[ 18 \, {x} = -2 \, {x''} - 12 \, {x'} \]
14
\item \[ 2 \, {y''} = -58 \, {y} - 20 \, {y'} \]
15
\end{enumerate}
16
17
\end{exerciseStatement}
18
19
\begin{exerciseAnswer}
20
\[ {y} = c_{1} e^{\left(\left(2 i - 5\right) \, t\right)} + c_{2} e^{\left(-\left(2 i + 5\right) \, t\right)} \]\[ {y} = {\left(d_{1} \cos\left(2 \, t\right) + d_{2} \sin\left(2 \, t\right)\right)} e^{\left(-5 \, t\right)} \]\[ {x} = k_{1} t e^{\left(-3 \, t\right)} + k_{2} e^{\left(-3 \, t\right)} \]
21
\end{exerciseAnswer}
22
23
24