<exercise masterit-seed="8484" masterit-slug="D1" masterit-name="Discontinuous functions and distributions">
<statement>
<p>
Illustrustrate both of the following integrals. Then explain how
to compute each.
</p>
<me>
\int_{ 3 }^{ 10 }
3 \, \delta\left(t - 6\right)
\,dt
\hspace{2em}
\int_{ 3 }^{ 10 }
3 \, \mathrm{u}\left(t - 6\right)
\,dt
</me>
</statement>
<answer>
<me>
\int_{ 3 }^{ 10 }
3 \, \delta\left(t - 6\right)
\,dt = 3
\hspace{2em}
\int_{ 3 }^{ 10 }
3 \, \mathrm{u}\left(t - 6\right)
\,dt = 12 </me>
</answer>
</exercise>