<item ident="D2-1783" title="D2 | Laplace transforms from formula and definition | ver. 1783"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>D2.</strong> </p> <p> Compute the Laplace transform <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\mathcal{L}\{y\}" alt="\mathcal{L}\{y\}" title="\mathcal{L}\{y\}" data-latex="\mathcal{L}\{y\}"/> of <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right)" alt="y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right)" title="y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right)" data-latex="y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right)"/> by using a transform table. </p> <p> Then show how the integral definition of the Laplace transform to obtains same result. </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>D2.</strong> </p> <p> Compute the Laplace transform <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cmathcal%7BL%7D%5C%7By%5C%7D" alt="\mathcal{L}\{y\}" title="\mathcal{L}\{y\}" data-latex="\mathcal{L}\{y\}"> of <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y%20=%20-2%20%5C,%20%5Cdelta%5Cleft(t%20-%201%5Cright)%20+%204%20%5C,%20e%5E%7B%5Cleft(3%20%5C,%20t%5Cright)%7D%20-%202%20%5C,%20%5Cmathrm%7Bu%7D%5Cleft(t%20-%202%5Cright)" alt="y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right)" title="y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right)" data-latex="y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right)"> by using a transform table. </p> <p> Then show how the integral definition of the Laplace transform to obtains same result. </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)}" alt="\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)}" title="\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)}" data-latex="\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)}"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cmathcal%7BL%7D%5C%7By%5C%7D%20=%20-%5Cfrac%7B2%20%5C,%20e%5E%7B%5Cleft(-2%20%5C,%20s%5Cright)%7D%7D%7Bs%7D%20+%20%5Cfrac%7B4%7D%7Bs%20-%203%7D%20-%202%20%5C,%20e%5E%7B%5Cleft(-s%5Cright)%7D" alt="\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)}" title="\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)}" data-latex="\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)}"> </p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>