Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
2
\begin{exerciseStatement}
3
4
5
Compute the Laplace transform \(\mathcal{L}\{y\}\) of \(y = -2 \, \delta\left(t - 1\right) + 4 \, e^{\left(3 \, t\right)} - 2 \, \mathrm{u}\left(t - 2\right) \) by using a transform table.
6
7
8
9
Then show how the integral definition of the Laplace transform to obtains same result.
10
11
12
\end{exerciseStatement}
13
14
\begin{exerciseAnswer}
15
\[
16
\mathcal{L}\{y\} = -\frac{2 \, e^{\left(-2 \, s\right)}}{s} + \frac{4}{s - 3} - 2 \, e^{\left(-s\right)} \]
17
\end{exerciseAnswer}
18
19
20