Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
1
<exercise masterit-seed="5950" masterit-slug="D2" masterit-name="Laplace transforms from formula and definition">
2
<statement>
3
<p>
4
Compute the Laplace transform <m>\mathcal{L}\{y\}</m> of
5
<m>y = -5 \, \delta\left(t - 5\right) - 4 \, e^{\left(2 \, t\right)} + 4 \, \mathrm{u}\left(t - 5\right) </m> by using a transform table.
6
</p>
7
<p>
8
Then show how the integral definition of the Laplace transform
9
to obtains same result.
10
</p>
11
</statement>
12
<answer>
13
<me>
14
\mathcal{L}\{y\} = \frac{4 \, e^{\left(-5 \, s\right)}}{s} - \frac{4}{s - 2} - 5 \, e^{\left(-5 \, s\right)} </me>
15
</answer>
16
</exercise>
17
18
19