<item ident="D4-3628" title="D4 | Using Laplace transforms to solve IVPs | ver. 3628"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>D4.</strong> </p> <p> Explain how to solve the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?2 \, {y} = -2 \, {y''} - 2 \, \mathrm{u}\left(t - 3\right) \hspace{2em} y(0)= 0 , y'(0)= -2" alt="2 \, {y} = -2 \, {y''} - 2 \, \mathrm{u}\left(t - 3\right) \hspace{2em} y(0)= 0 , y'(0)= -2" title="2 \, {y} = -2 \, {y''} - 2 \, \mathrm{u}\left(t - 3\right) \hspace{2em} y(0)= 0 , y'(0)= -2" data-latex="2 \, {y} = -2 \, {y''} - 2 \, \mathrm{u}\left(t - 3\right) \hspace{2em} y(0)= 0 , y'(0)= -2"/> </p> <p>Hint: <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\frac{1}{s^{3} + s} = -\frac{s}{s^{2} + 1} + \frac{1}{s}" alt="\frac{1}{s^{3} + s} = -\frac{s}{s^{2} + 1} + \frac{1}{s}" title="\frac{1}{s^{3} + s} = -\frac{s}{s^{2} + 1} + \frac{1}{s}" data-latex="\frac{1}{s^{3} + s} = -\frac{s}{s^{2} + 1} + \frac{1}{s}"/>.</p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>D4.</strong> </p> <p> Explain how to solve the following IVP. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?2%20%5C,%20%7By%7D%20=%20-2%20%5C,%20%7By''%7D%20-%202%20%5C,%20%5Cmathrm%7Bu%7D%5Cleft(t%20-%203%5Cright)%20%5Chspace%7B2em%7D%20y(0)=%200%20,%20y'(0)=%20-2" alt="2 \, {y} = -2 \, {y''} - 2 \, \mathrm{u}\left(t - 3\right) \hspace{2em} y(0)= 0 , y'(0)= -2" title="2 \, {y} = -2 \, {y''} - 2 \, \mathrm{u}\left(t - 3\right) \hspace{2em} y(0)= 0 , y'(0)= -2" data-latex="2 \, {y} = -2 \, {y''} - 2 \, \mathrm{u}\left(t - 3\right) \hspace{2em} y(0)= 0 , y'(0)= -2"> </p> <p>Hint: <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cfrac%7B1%7D%7Bs%5E%7B3%7D%20+%20s%7D%20=%20-%5Cfrac%7Bs%7D%7Bs%5E%7B2%7D%20+%201%7D%20+%20%5Cfrac%7B1%7D%7Bs%7D" alt="\frac{1}{s^{3} + s} = -\frac{s}{s^{2} + 1} + \frac{1}{s}" title="\frac{1}{s^{3} + s} = -\frac{s}{s^{2} + 1} + \frac{1}{s}" data-latex="\frac{1}{s^{3} + s} = -\frac{s}{s^{2} + 1} + \frac{1}{s}">.</p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\mathcal{L}\{y\}= -\frac{2}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{{\left(s^{2} + 1\right)} s}" alt="\mathcal{L}\{y\}= -\frac{2}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{{\left(s^{2} + 1\right)} s}" title="\mathcal{L}\{y\}= -\frac{2}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{{\left(s^{2} + 1\right)} s}" data-latex="\mathcal{L}\{y\}= -\frac{2}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{{\left(s^{2} + 1\right)} s}"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?\mathcal{L}\{y\}= \frac{s e^{\left(-3 \, s\right)}}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{s} - \frac{2}{s^{2} + 1}" alt="\mathcal{L}\{y\}= \frac{s e^{\left(-3 \, s\right)}}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{s} - \frac{2}{s^{2} + 1}" title="\mathcal{L}\{y\}= \frac{s e^{\left(-3 \, s\right)}}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{s} - \frac{2}{s^{2} + 1}" data-latex="\mathcal{L}\{y\}= \frac{s e^{\left(-3 \, s\right)}}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{s} - \frac{2}{s^{2} + 1}"/> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?{y} = \cos\left(t - 3\right) \mathrm{u}\left(t - 3\right) - 2 \, \sin\left(t\right) - \mathrm{u}\left(t - 3\right)" alt="{y} = \cos\left(t - 3\right) \mathrm{u}\left(t - 3\right) - 2 \, \sin\left(t\right) - \mathrm{u}\left(t - 3\right)" title="{y} = \cos\left(t - 3\right) \mathrm{u}\left(t - 3\right) - 2 \, \sin\left(t\right) - \mathrm{u}\left(t - 3\right)" data-latex="{y} = \cos\left(t - 3\right) \mathrm{u}\left(t - 3\right) - 2 \, \sin\left(t\right) - \mathrm{u}\left(t - 3\right)"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cmathcal%7BL%7D%5C%7By%5C%7D=%20-%5Cfrac%7B2%7D%7Bs%5E%7B2%7D%20+%201%7D%20-%20%5Cfrac%7Be%5E%7B%5Cleft(-3%20%5C,%20s%5Cright)%7D%7D%7B%7B%5Cleft(s%5E%7B2%7D%20+%201%5Cright)%7D%20s%7D" alt="\mathcal{L}\{y\}= -\frac{2}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{{\left(s^{2} + 1\right)} s}" title="\mathcal{L}\{y\}= -\frac{2}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{{\left(s^{2} + 1\right)} s}" data-latex="\mathcal{L}\{y\}= -\frac{2}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{{\left(s^{2} + 1\right)} s}"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%5Cmathcal%7BL%7D%5C%7By%5C%7D=%20%5Cfrac%7Bs%20e%5E%7B%5Cleft(-3%20%5C,%20s%5Cright)%7D%7D%7Bs%5E%7B2%7D%20+%201%7D%20-%20%5Cfrac%7Be%5E%7B%5Cleft(-3%20%5C,%20s%5Cright)%7D%7D%7Bs%7D%20-%20%5Cfrac%7B2%7D%7Bs%5E%7B2%7D%20+%201%7D" alt="\mathcal{L}\{y\}= \frac{s e^{\left(-3 \, s\right)}}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{s} - \frac{2}{s^{2} + 1}" title="\mathcal{L}\{y\}= \frac{s e^{\left(-3 \, s\right)}}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{s} - \frac{2}{s^{2} + 1}" data-latex="\mathcal{L}\{y\}= \frac{s e^{\left(-3 \, s\right)}}{s^{2} + 1} - \frac{e^{\left(-3 \, s\right)}}{s} - \frac{2}{s^{2} + 1}"> </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%7By%7D%20=%20%5Ccos%5Cleft(t%20-%203%5Cright)%20%5Cmathrm%7Bu%7D%5Cleft(t%20-%203%5Cright)%20-%202%20%5C,%20%5Csin%5Cleft(t%5Cright)%20-%20%5Cmathrm%7Bu%7D%5Cleft(t%20-%203%5Cright)" alt="{y} = \cos\left(t - 3\right) \mathrm{u}\left(t - 3\right) - 2 \, \sin\left(t\right) - \mathrm{u}\left(t - 3\right)" title="{y} = \cos\left(t - 3\right) \mathrm{u}\left(t - 3\right) - 2 \, \sin\left(t\right) - \mathrm{u}\left(t - 3\right)" data-latex="{y} = \cos\left(t - 3\right) \mathrm{u}\left(t - 3\right) - 2 \, \sin\left(t\right) - \mathrm{u}\left(t - 3\right)"> </p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>