<item ident="F1-6113" title="F1 | Direction fields for first-order ODEs | ver. 6113"> <itemmetadata> <qtimetadata> <qtimetadatafield> <fieldlabel>question_type</fieldlabel> <fieldentry>essay_question</fieldentry> </qtimetadatafield> </qtimetadata> </itemmetadata> <presentation> <material> <mattextxml> <div class="exercise-statement"> <p> <strong>F1.</strong> </p> <p> Use <a href="https://sagecell.sagemath.org/">https://sagecell.sagemath.org/</a> to run the SageMath code <code>t,y = var('t y'); plot_slope_field(cos(t+y), (t,-5,5), (y,-5,5))</code> producing the direction field for the ODE <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?{y'} = \cos\left({y} + t\right)" alt="{y'} = \cos\left({y} + t\right)" title="{y'} = \cos\left({y} + t\right)" data-latex="{y'} = \cos\left({y} + t\right)"/>. </p> <p> Let <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y_p" alt="y_p" title="y_p" data-latex="y_p"/> be the solution to the following IVP. Explain how to use its direction field to approximate the value of <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y_p" alt="y_p" title="y_p" data-latex="y_p"/> at <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?t= 0" alt="t= 0" title="t= 0" data-latex="t= 0"/>. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?{y'} = \cos\left({y} + t\right) \hspace{2em} y( 2 )= -1" alt="{y'} = \cos\left({y} + t\right) \hspace{2em} y( 2 )= -1" title="{y'} = \cos\left({y} + t\right) \hspace{2em} y( 2 )= -1" data-latex="{y'} = \cos\left({y} + t\right) \hspace{2em} y( 2 )= -1"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-statement"> <p> <strong>F1.</strong> </p> <p> Use <a href="https://sagecell.sagemath.org/">https://sagecell.sagemath.org/</a> to run the SageMath code <code>t,y = var('t y'); plot_slope_field(cos(t+y), (t,-5,5), (y,-5,5))</code> producing the direction field for the ODE <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%7By'%7D%20=%20%5Ccos%5Cleft(%7By%7D%20+%20t%5Cright)" alt="{y'} = \cos\left({y} + t\right)" title="{y'} = \cos\left({y} + t\right)" data-latex="{y'} = \cos\left({y} + t\right)">. </p> <p> Let <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y_p" alt="y_p" title="y_p" data-latex="y_p"> be the solution to the following IVP. Explain how to use its direction field to approximate the value of <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y_p" alt="y_p" title="y_p" data-latex="y_p"> at <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?t=%200" alt="t= 0" title="t= 0" data-latex="t= 0">. </p> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?%7By'%7D%20=%20%5Ccos%5Cleft(%7By%7D%20+%20t%5Cright)%20%5Chspace%7B2em%7D%20y(%202%20)=%20-1" alt="{y'} = \cos\left({y} + t\right) \hspace{2em} y( 2 )= -1" title="{y'} = \cos\left({y} + t\right) \hspace{2em} y( 2 )= -1" data-latex="{y'} = \cos\left({y} + t\right) \hspace{2em} y( 2 )= -1"> </p> </div> </mattext> </material> <response_str ident="response1" rcardinality="Single"> <render_fib> <response_label ident="answer1" rshuffle="No"/> </render_fib> </response_str> </presentation> <itemfeedback ident="general_fb"> <flow_mat> <material> <mattextxml> <div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y_p( 0 )\approx -1.0" alt="y_p( 0 )\approx -1.0" title="y_p( 0 )\approx -1.0" data-latex="y_p( 0 )\approx -1.0"/> </p> </div> </mattextxml> <mattext texttype="text/html"><div class="exercise-answer"> <h4>Partial Answer:</h4> <p style="text-align:center;"> <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?y_p(%200%20)%5Capprox%20-1.0" alt="y_p( 0 )\approx -1.0" title="y_p( 0 )\approx -1.0" data-latex="y_p( 0 )\approx -1.0"> </p> </div> </mattext> </material> </flow_mat> </itemfeedback> </item>