Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
20865 views
<item ident="N1-6866" title="N1 | Existence/uniqueness theorem for linear IVPs | ver. 6866">
  <itemmetadata>
    <qtimetadata>
      <qtimetadatafield>
        <fieldlabel>question_type</fieldlabel>
        <fieldentry>essay_question</fieldentry>
      </qtimetadatafield>
    </qtimetadata>
  </itemmetadata>
  <presentation>
    <material>
      <mattextxml>
        <div class="exercise-statement">
          <p>
            <strong>N1.</strong>
          </p>
          <p> Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. </p>
          <p style="text-align:center;">
            <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?-{y'} e^{\left(-4 \, t\right)} = {y} t e^{t} + {\left(t + 4\right)} {\left(t - 5\right)} \hspace{2em} x( -4 )= -4" alt="-{y'} e^{\left(-4 \, t\right)} = {y} t e^{t} + {\left(t + 4\right)} {\left(t - 5\right)} \hspace{2em} x( -4 )= -4" title="-{y'} e^{\left(-4 \, t\right)} = {y} t e^{t} + {\left(t + 4\right)} {\left(t - 5\right)} \hspace{2em} x( -4 )= -4" data-latex="-{y'} e^{\left(-4 \, t\right)} = {y} t e^{t} + {\left(t + 4\right)} {\left(t - 5\right)} \hspace{2em} x( -4 )= -4"/>
          </p>
        </div>
      </mattextxml>
      <mattext texttype="text/html">&lt;div class="exercise-statement"&gt;
  &lt;p&gt;
    &lt;strong&gt;N1.&lt;/strong&gt;
  &lt;/p&gt;
  &lt;p&gt; Find the largest interval for which the Existence and Uniqueness Theorem for Linear IVPs guarantees a unique solution for the following IVP. &lt;/p&gt;
  &lt;p style="text-align:center;"&gt;
    &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?-%7By'%7D%20e%5E%7B%5Cleft(-4%20%5C,%20t%5Cright)%7D%20=%20%7By%7D%20t%20e%5E%7Bt%7D%20+%20%7B%5Cleft(t%20+%204%5Cright)%7D%20%7B%5Cleft(t%20-%205%5Cright)%7D%20%5Chspace%7B2em%7D%20x(%20-4%20)=%20-4" alt="-{y'} e^{\left(-4 \, t\right)} = {y} t e^{t} + {\left(t + 4\right)} {\left(t - 5\right)} \hspace{2em} x( -4 )= -4" title="-{y'} e^{\left(-4 \, t\right)} = {y} t e^{t} + {\left(t + 4\right)} {\left(t - 5\right)} \hspace{2em} x( -4 )= -4" data-latex="-{y'} e^{\left(-4 \, t\right)} = {y} t e^{t} + {\left(t + 4\right)} {\left(t - 5\right)} \hspace{2em} x( -4 )= -4"&gt;
  &lt;/p&gt;
&lt;/div&gt;

</mattext>
    </material>
    <response_str ident="response1" rcardinality="Single">
      <render_fib>
        <response_label ident="answer1" rshuffle="No"/>
      </render_fib>
    </response_str>
  </presentation>
  <itemfeedback ident="general_fb">
    <flow_mat>
      <material>
        <mattextxml>
          <div class="exercise-answer">
            <h4>Partial Answer:</h4>
            <p style="text-align:center;">
              <img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-\infty,+\infty)" alt="(-\infty,+\infty)" title="(-\infty,+\infty)" data-latex="(-\infty,+\infty)"/>
            </p>
          </div>
        </mattextxml>
        <mattext texttype="text/html">&lt;div class="exercise-answer"&gt;
  &lt;h4&gt;Partial Answer:&lt;/h4&gt;
  &lt;p style="text-align:center;"&gt;
    &lt;img style="border:1px #ddd solid;padding:5px;border-radius:5px;" src="https://latex.codecogs.com/svg.latex?(-%5Cinfty,+%5Cinfty)" alt="(-\infty,+\infty)" title="(-\infty,+\infty)" data-latex="(-\infty,+\infty)"&gt;
  &lt;/p&gt;
&lt;/div&gt;

</mattext>
      </material>
    </flow_mat>
  </itemfeedback>
</item>